IMIS

Publicaties | Instituten | Personen | Datasets | Projecten | Kaarten
[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

Tapping hydrogen fuel from the ocean: a review on photocatalytic, photoelectrochemical and electrolytic splitting of seawater
Dingenen, F.; Verbruggen, S.W. (2021). Tapping hydrogen fuel from the ocean: a review on photocatalytic, photoelectrochemical and electrolytic splitting of seawater. Renew. Sust. Energ. Rev. 142: 110866. https://hdl.handle.net/10.1016/j.rser.2021.110866
In: Renewable & Sustainable Energy Reviews. Elsevier/Elsevier Science: Oxford. ISSN 1364-0321; e-ISSN 1879-0690, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Trefwoord
    Marien/Kust
Author keywords
    Seawater splitting; Hydrogen; Photocatalysis; Photoelectrochemical cells; Electrolysis; Chloride

Auteurs  Top 
  • Dingenen, F., meer
  • Verbruggen, S.W., meer

Abstract
    Direct splitting of earth-abundant seawater provides an eco-friendly route for the production of clean H2, but is hampered by selectivity and stability issues. Direct seawater electrolysis is the most established technology, attaining high current densities in the order of 1–2 A cm−2. Alternatively, light-driven processes such as photocatalytic and photoelectrochemical seawater splitting are particularly promising as well, as they rely on renewable solar power. Solar-to-Hydrogen efficiencies have increased over the past decade from negligible values to about 2%. Especially the absence of large local pH changes (in the order of several tenths of a pH unit compared to up to 9 pH units for electrolysis) is a strong asset for pure photocatalysis. This may lead to less adverse side-reactions such as Cl2 and ClO formation, (acid or base induced) corrosion and scaling. Besides, additional requirements for electrolytic cells, e.g. membranes and electricity input, are not needed in pure photocatalysis systems. In this review, the state-of-the-art technologies in light-driven seawater splitting are compared to electrochemical approaches with a focus on sustainability and stability. Promising advances are identified at the level of the catalyst as well as the process, and insight is provided in solutions crossing different fields.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs