The wind- and wave-driven inner-shelf circulation
In: Carlson, C.A.; Giovannoni, S.J. (Ed.) (2012). Ann. Rev. Mar. Sci. 4. Annual Review of Marine Science, 4. Annual Reviews: Palo Alto. ISBN 978-0-8243-4504-4. 542 pp., meer
In: Annual Review of Marine Science. Annual Reviews: Palo Alto, Calif. ISSN 1941-1405; e-ISSN 1941-0611, meer
| |
Trefwoord |
|
Author keywords |
coastal oceanography, cross-shelf exchange, upwelling, wave-current interaction, nearshore |
Auteurs | | Top |
- Lentz, S.J.
- Fewings, M.R.
|
|
|
Abstract |
The inner continental shelf, which spans water depths of a few meters to tens of meters, is a dynamically defined region that lies between the surf zone (where waves break) and the middle continental shelf (where the along-shelf circulation is usually in geostrophic balance). Many types of forcing that are often neglected over the deeper shelf—such as tides, buoyant plumes, surface gravity waves, and cross-shelf wind stress—drive substantial circulations over the inner shelf. Cross-shelf circulation over the inner shelf has ecological and geophysical consequences: It connects the shore to the open ocean by transporting pollutants, larvae, phytoplankton, nutrients, and sediment. This review of circulation and momentum balances over the inner continental shelf contrasts prior studies, which focused mainly on the roles of along-shelf wind and pressure gradients, with recent understanding of the dominant roles of cross-shelf wind and surface gravity waves. |
|