IMIS

Publicaties | Instituten | Personen | Datasets | Projecten | Kaarten
[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

Conditional responses of benthic communities to interference from an intertidal bivalve
Van Colen, C.; Thrush, S.F.; Vincx, M.; Ysebaert, T. (2013). Conditional responses of benthic communities to interference from an intertidal bivalve. PLoS One 8(6): e65861. http://dx.doi.org/10.1371/journal.pone.0065861
In: PLoS One. Public Library of Science: San Francisco. ISSN 1932-6203; e-ISSN 1932-6203, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Trefwoord
    Marien/Kust

Auteurs  Top 
  • Van Colen, C., meer
  • Thrush, S.F.
  • Vincx, M., meer
  • Ysebaert, T., meer

Abstract
    Habitat-modifying organisms that impact other organisms and local functioning are important in determining ecosystem resilience. However, it is often unclear how the outcome of interactions performed by key species varies depending on the spatial and temporal disturbance context which makes the prediction of disturbance-driven regime shifts difficult. We investigated the strength and generality of effects of the filter feeding cockle Cerastoderma edule on its ambient intertidal benthic physical and biological environment. By comparing the magnitude of the effect of experimental cockle removal between a non-cohesive and a sheltered cohesive sediment in two different periods of the year, we show that the outcome of cockle interference effects relates to differences in physical disturbance, and to temporal changes in suspended sediment load and ontogenetic changes in organism traits. Interference effects were only present in the cohesive sediments, though the effects varied seasonally. Cockle presence decreased only the density of surface-dwelling species suggesting that interference effects were particularly mediated by bioturbation of the surface sediments. Furthermore, density reductions in the presence of cockles were most pronounced during the season when larvae and juveniles were present, suggesting that these life history stages are most vulnerable to interference competition. We further illustrate that cockles may enhance benthic microalgal biomass, most likely through the reduction of surface-dwelling grazing species, especially in periods with high sediment load and supposedly also high bioturbation rates. Our results emphasize that the physical disturbance of the sediment may obliterate biotic interactions, and that temporal changes in environmental stressors, such as suspended sediments, may affect the outcome of key species interference effects at the local scale. Consequently, natural processes and anthropogenic activities that change bed shear stress and sediment dynamics in coastal soft-sediment systems will affect cockle-mediated influences on ecosystem properties and therefore the resilience of these systems to environmental change.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs