Using cell and developmental biology to enhance embryo survival in aquaculture
In: Aquaculture International. Springer: London. ISSN 0967-6120; e-ISSN 1573-143X, meer
Ook verschenen in:Focardi, S.; Saroglia, M. (Ed.) (2005). Animal welfare, human health and interactions with the environment. Aquaculture International, 13(1-2). Springer: Dordrecht. 173 pp., meer
| |
Trefwoorden |
Acids > Organic compounds > Organic acids > Nucleic acids > DNA Feeding Fungi Microorganisms > Bacteria Pollutants Radiations > Electromagnetic radiation > Ultraviolet radiation Marien/Kust |
Author keywords |
bacteria; DNA damage; feed; fungi; pollutants; ultraviolet |
Abstract |
Research on how the young embryo protects itself from normal environmental stresses reveals that the earliest phases of development have unique, innate mechanisms to protect the embryo during this most sensitive phase of embryogenesis. This paper shows ways in which knowledge of these protection mechanisms might be used to advantage in the aquaculture situation. These include novel mechanisms to deter bacteria and fungi such as secretion of anti-bacterial/anti-fungal substances from the egg at fertilization, as well as the utilization of anti-fungal metabolites provided by symbiotic bacteria associated with egg cases. UV damage is avoided by provision of unique sunscreens to the embryos so that UV penetration into the cytoplasm is avoided. Finally, embryos have exaggerated mechanisms to avoid the effect of toxicants on development but these are inadequate to remove pollutants present in feed used in aquaculture. Approaches are suggested on how this knowledge about adaptations might be used in the aquaculture setting to avoid pathogens, increase UV resistance and reduce levels of pollutants. |
|