IMIS

Publicaties | Instituten | Personen | Datasets | Projecten | Kaarten
[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

Nitrogen cycling in a hypothetical scenario of generalised organic agriculture in the Seine, Somme and Scheldt watersheds
Thieu, V.; Billen, G.; Garnier, J.; Benoit, M. (2011). Nitrogen cycling in a hypothetical scenario of generalised organic agriculture in the Seine, Somme and Scheldt watersheds. Reg. environ. Change 11(2): 359-370. http://dx.doi.org/10.1007/s10113-010-0142-4
In: Regional environmental change. SPRINGER HEIDELBERG. ISSN 1436-3798; e-ISSN 1436-378X, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Author keywords
    Nitrogen; Organic agriculture; Nitrate contamination; Eutrophication; Seine; Somme; Scheldt

Auteurs  Top 
  • Thieu, V., meer
  • Billen, G., meer
  • Garnier, J., meer
  • Benoit, M.

Abstract
    Nitrogen contamination of ground and surface water in the Seine, Somme and Scheldt watersheds, as well as in the receiving coastal marine zones, results in severe ecological problems. Previous modelling results showed that the implementation of classical management measures involving improvement of wastewater purification and "good agricultural practices" are not sufficient to obviate these problems. A more radical scenario was therefore established, consisting of a generalised shift to organic agriculture of all agricultural areas in the three basins, with the additional constraints that livestock is fed only on local fodder production. This scenario involves an increased livestock density in the Seine and Somme and a decrease in livestock in the Scheldt basin. It leads to a significant reduction of agricultural production that finally brings the three basins closer to autotrophy/heterotrophy equilibrium. Nitrate concentrations in most of the drainage network would drop below the threshold of 2.25 mgN/l in the most optimistic hypothesis. The excess of nitrogen over silica (with respect to the requirements of marine diatoms) delivered into the coastal zones would be decreased by a factor from 2 to 5, thus strongly reducing, but not entirely eliminating the potential for marine eutrophication.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs