IMIS

Publicaties | Instituten | Personen | Datasets | Projecten | Kaarten
[ meld een fout in dit record ]mandje (1): toevoegen | toon Print deze pagina

one publication added to basket [210901]
A metapopulation perspective for salmon and other anadromous fish
Schtickzelle, N.; Quinn, T.P. (2007). A metapopulation perspective for salmon and other anadromous fish. Fish Fish. 8(4): 297-314. dx.doi.org/10.1111/j.1467-2979.2007.00256.x
In: Fish and Fisheries. Blackwell Science: Oxford. ISSN 1467-2960; e-ISSN 1467-2979, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Author keywords
    conservation and management; metapopulation dynamics; population

Auteurs  Top 
  • Schtickzelle, N.
  • Quinn, T.P.

Abstract
    Salmonids are an important component of biodiversity, culture and economy in several regions, particularly the North Pacific Rim. Given this importance, they have been intensively studied for about a century, and the pioneering scientists recognized the critical link between population structure and conservation. Spatial structure is indeed of prime importance for salmon conservation and management. At first glance, the essence of the metapopulation concept, i.e. a population of populations, widely used on other organisms like butterflies, seems to be particularly relevant to salmon, and more generally to anadromous fish. Nevertheless, the concept is rarely used, and barely tested.
    Here, we present a metapopulation perspective for anadromous fish, assessing in terms of processes rather than of patterns the set of necessary conditions for metapopulation dynamics to exist. Salmon, and particularly sockeye salmon in Alaska, are used as an illustrative case study. A review of life history traits indicates that the three basic conditions are likely to be fulfilled by anadromous salmon: (i) the spawning habitat is discrete and populations are spatially separated by unsuitable habitat; (ii) some asynchrony is present in the dynamics of more or less distant populations and (iii) dispersal links populations because some salmon stray from their natal population. The implications of some peculiarities of salmon life history traits, unusual in classical metapopulations, are also discussed.
    Deeper understanding of the population structure of anadromous fish will be advanced by future studies on specific topics: (i) criteria must be defined for the delineation of suitable habitats that are based on features of the biotope and not on the presence of fish; (ii) the collection of long-term data and the development of improved methods to determine age structure are essential for correctly estimating levels of asynchrony between populations and (iii) several key aspects of dispersal are still poorly understood and need to be examined in detail: the spatial and temporal scales of dispersal movements, the origin and destination populations instead of simple straying rates, and the relative reproductive success of immigrants and residents.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs