one publication added to basket [16487] | Habitat selection and energetics of the fiddler crab (Uca tangeri)
Klaassen, M.; Ens, B.J. (1993). Habitat selection and energetics of the fiddler crab (Uca tangeri). Neth. J. Sea Res. 31(4): 495-502
In: Netherlands Journal of Sea Research. Netherlands Institute for Sea Research (NIOZ): Groningen; Den Burg. ISSN 0077-7579; e-ISSN 1873-1406, meer
| |
Auteurs | | Top |
- Klaassen, M.
- Ens, B.J., meer
|
|
|
Abstract |
We tried to unravel the possible links between the skewed predation risk in Uca tangeri (where large individuals are more at risk from avian predators) and size-dependent changes in the physiology and habitat choice of this fiddler crab species. Over a transect running trom low to high in the tidal zone of a beach in Mauritania, the temperature profile at various depths in the substrate, the water-table level of seep water, salt concentration of seep water, depth of the aerobic level, operative temperatures on the surface, and size distribution of crabs were assessed. In addition, resting metabolic rates, Q10 and thermal and starvation tolerances were estimated. Going from low to high in the tidal zone, crab size and burrow depth increased. At the preferred burrowing depth, microclimatological conditions appeared to be equally favourable at all sites. At the surface, conditions were more favourable low in the tidal zone, where also food availability is sufficient to enable small crabs to forage in the vicinity of their burrows. Large crabs have higher energy requirements and are thereby forced to forage in flocks low in the tidal zone where food is probably more abundant. Low in the tidal zone, digging deeply is impossible as the aerobic layer is rather thin. Large crabs prefer living high in the tidal zone as (1) deep burrows ensure better protection against predators, (2) more time is available for digging holes and (3) the substrate is better suited for reproduction. Energy reserves in late summer ensured an average of 34 days of survival. It is argued that the allotment of energy to growth must be considerable even in reproducing animals; the rewards of growth being the disproportional increase in reproductive output with size. |
|