IMIS

Publicaties | Instituten | Personen | Datasets | Projecten | Kaarten
[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

Northern Adriatic meteorological tsunamis: Assessment of their potential through ocean modeling experiments
Sepic, J.; Vilibic, I.; Fine, I.V. (2015). Northern Adriatic meteorological tsunamis: Assessment of their potential through ocean modeling experiments. JGR: Oceans 120(4): 2993-3010. https://dx.doi.org/10.1002/2015jc010795
In: Journal of Geophysical Research-Oceans. AMER GEOPHYSICAL UNION: Washington. ISSN 2169-9275; e-ISSN 2169-9291, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Auteurs  Top 
  • Sepic, J., meer
  • Vilibic, I., meer
  • Fine, I.V.

Abstract
    Potential for generation of meteotsunami waves via open ocean resonance has been documented for the shallow northern Adriatic, based on a set of barotropic numerical modeling experiments. Model simulations were forced by a bell-shaped traveling atmospheric (air pressure, wind) disturbance, with shape and propagation parameters chosen in accordance with measurements done during several observed northern Adriatic meteotsunamis. Air pressure disturbances were found to generate much larger meteotsunami waves than wind disturbances, with wind disturbances having a limited influence in the very coastal and shallow areas only. Numerical simulations reveal that the most important factor for generation of large meteotsunami waves is matching between the speed of the atmospheric disturbance and the speed of long-ocean waves. Already a small (∼10%) deviation from resonant conditions stops the wave growth and dramatically decreases height of predicted waves. A train of atmospheric disturbances can significantly increase maximum wave heights at selected locations at which multiple reflections and superimpositions of meteotsunami waves occur. Sensitivity of model simulations to resonant conditions and limited cross-propagation width of atmospheric disturbance explain the localization of destructive meteotsunami waves in a limited area during destructive historic events. Mapping of maximum predicted wave heights indicates places with large meteotsunami hazard potential, matching the locations where real events were observed, and may be a useful tool for assessing vulnerability and risks in coastal areas during extreme sea level events.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs