IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

The physiology and metabolic properties of a novel, low‐abundance Psychrilyobacter species isolated from the anoxic Black Sea shed light on its ecological role
Yadav, S.; Koenen, M.; Bale, N.; Sinninghe Damsté, J.S.; Villanueva, L. (2021). The physiology and metabolic properties of a novel, low‐abundance Psychrilyobacter species isolated from the anoxic Black Sea shed light on its ecological role. Environmental Microbiology Reports 13(6): 899-910. https://dx.doi.org/10.1111/1758-2229.13012
In: Environmental Microbiology Reports. Wiley-Blackwell. ISSN 1758-2229, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Sinninghe Damsté, J.S., more
  • Villanueva, L., more

Abstract

    Members of the Psychrilyobacter spp. of the phylum Fusobacteria have been recently suggested to be amongst the most significant primary degraders of the detrital organic matter in sulfidic marine habitats, despite representing only a small proportion (<0.1%) of the microbial community. In this study, we have isolated a previously uncultured Psychrilyobacter species (strains SD5T and BL5; Psychrilyobacter piezotolerans sp. nov.) from the sulfidic waters (i.e., 2000 m depth) of the Black Sea and investigated its physiology and genomic capability in order to better understand potential ecological adaptation strategies. P. piezotolerans utilized a broad range of organic substituents (carbohydrates and proteins) and, remarkably, grew at sulfide concentrations up to 32 mM. These flexible physiological properties were supported by the presence of the respective metabolic pathways in the genomes of both strains. Growth at varying hydrostatic pressure (0.1–50 MPa) was sustained by modifying its membrane lipid composition. Thus, we have isolated a novel member of the ‘rare biosphere’, which endures the extreme conditions and may play a significant role in the degradation of detrital organic matter sinking into the sulfidic waters of the Black Sea.


All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors