IMIS | Vlaams Instituut voor de Zee

Vlaams Instituut voor de Zee

Platform voor marien onderzoek


Publicaties | Instituten | Personen | Datasets | Projecten | Kaarten
[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

Differences in metal sequestration between zebra mussels from clean and polluted field locations
Voets, J.; Steen Redeker, E.; Blust, R.; Bervoets, L. (2009). Differences in metal sequestration between zebra mussels from clean and polluted field locations. Aquat. Toxicol. 93(1): 53-60.
In: Aquatic Toxicology. Elsevier Science: Tokyo; New York; London; Amsterdam. ISSN 0166-445X; e-ISSN 1879-1514, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

    Chemical compounds > Organic compounds > Proteins > Metallothioneins
    Chemical elements > Metals > Heavy metals > Cadmium
    Chemical elements > Metals > Transition elements > Heavy metals > Copper
    Trace elements > Trace metals
    Water pollution
    Dreissena polymorpha (Pallas, 1771) [WoRMS]
    België, Vlaanderen [Marine Regions]
    Zoet water
Author keywords
    Zebra mussel; Fractionation; Metallothionein; Cadmium; Copper; Zinc

Auteurs  Top 

    Organisms are able to detoxify accumulated metals by, e.g. binding them to metallothionein (MT) and/or sequestering them in metal-rich granules (MRG). The different factors involved in determining the capacity or efficiency with which metals are detoxified are not yet known.In this work we studied how the sub-cellular distribution pattern of cadmium, copper and zinc in whole tissue of zebra mussels from clean and polluted surface waters is influenced by the total accumulated metal concentration and by its physiological condition. Additionally we measured the metallothionein concentration in the mussel tissue. Metal concentration increased gradually in the metal-sensitive and detoxified sub-cellular fractions with increasing whole tissue concentrations. However, metal concentrations in the sensitive fractions did not increase to the same extent as metal concentrations in whole tissues. In more polluted mussels the contribution of MRG and MT became more important. Nevertheless, metal detoxification was not sufficient to prevent metal binding to heat-sensitive low molecular weight proteins (HDP fraction). Finally we found an indication that metal detoxification was influenced by the condition of the zebra mussels. MT content could be explained for up to 83% by variations in Zn concentration and physiological condition of the mussels.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs