Late Ordovician climate change and extinctions driven by elevated volcanic nutrient supply
Longman, J.; Mills, B.J.W.; Manners, H.R.; Gernon, T.M.; Palmer, M.R. (2021). Late Ordovician climate change and extinctions driven by elevated volcanic nutrient supply. Nature Geoscience 14(12): 924-929. https://dx.doi.org/10.1038/s41561-021-00855-5
In: Nature Geoscience. Nature Publishing Group: London. ISSN 1752-0894; e-ISSN 1752-0908, more
| |
Authors | | Top |
- Longman, J.
- Mills, B.J.W., more
- Manners, H.R.
|
- Gernon, T.M.
- Palmer, M.R.
|
|
Abstract |
The Late Ordovician (~459–444 million years ago) was characterized by global cooling, glaciation and severe mass extinction. These events may have been driven by increased delivery of the nutrient phosphorus (P) to the ocean and associated increases in marine productivity, but it is not clear why this occurred in the two pulses identified in the geological record. We link both cooling phases—and the extinction—to volcanic eruptions through marine deposition of nutrient-rich ash and the weathering of terrestrially emplaced ash and lava. We then reconstruct the influence of Late Ordovician volcanic P delivery on the marine system by coupling an estimate of bioavailable phosphate supply (derived from a depletion and weathering model) to a global biogeochemical model. Our model compares volcanic ash P content in marine sediments before and after alteration to determine depletion factors, and we find good agreement with observed carbon isotope and reconstructed temperature shifts. Hence, massive volcanism can drive substantial global cooling on million-year timescales due to P delivery associated with long-term weathering of volcanic deposits, offsetting the transient warming of greenhouse gas emission associated with volcanic eruptions. Such longer-term cooling and potential for marine eutrophication may be important for other volcanism-driven global events. |
|