IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Phenotypic variability in the coccolithophore Emiliania huxleyi
Blanco-Ameijeiras, S.; Lebrato, M.; Stoll, H.M.; Iglesias-Rodriguez, D.; Müller, M.N.; Mendez-Vicente, A.; Oschlies, A. (2016). Phenotypic variability in the coccolithophore Emiliania huxleyi. PLoS One 11(6): e0157697. https://dx.doi.org/10.1371/journal.pone.0157697
In: PLoS One. Public Library of Science: San Francisco. ISSN 1932-6203; e-ISSN 1932-6203, more
Peer reviewed article  

Available in  Authors 

Keywords
    Exploitable Scientific Result
    Marine Sciences
    Marine Sciences > Marine Genomics
    Others > Modelling & Prediction
    Scientific Community
    Scientific Publication
    Marine/Coastal

Project Top | Authors 
  • Association of European marine biological laboratories, more

Authors  Top 
  • Blanco-Ameijeiras, S.
  • Lebrato, M.
  • Stoll, H.M.
  • Iglesias-Rodriguez, D.
  • Müller, M.N.
  • Mendez-Vicente, A.
  • Oschlies, A.

Abstract
    Coccolithophores are a vital part of oceanic phytoplankton assemblages that produce organic matter and calcium carbonate (CaCO3) containing traces of other elements (i.e. Sr and Mg). Their associated carbon export from the euphotic zone to the oceans' interior plays a crucial role in CO2 feedback mechanisms and biogeochemical cycles. The coccolithophore Emiliania huxleyi has been widely studied as a model organism to understand physiological, biogeochemical, and ecological processes in marine sciences. Here, we show the inter-strain variability in physiological and biogeochemical traits in 13 strains of E. huxleyi from various biogeographical provinces obtained from culture collections commonly used in the literature. Our results demonstrate that inter-strain genetic variability has greater potential to induce larger phenotypic differences than the phenotypic plasticity of single strains cultured under a broad range of variable environmental conditions. The range of variation found in physiological parameters and calcite Sr:Ca highlights the need to reconsider phenotypic variability in paleoproxy calibrations and model parameterizations to adequately translate findings from single strain laboratory experiments to the real ocean.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors