IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Optimization to low temperature activity in psychrophilic enzymes
Struvay, C.; Feller, G. (2012). Optimization to low temperature activity in psychrophilic enzymes. International Journal of Molecular Sciences 13(9): 11643-11665. https://dx.doi.org/10.3390/ijms130911643
In: International Journal of Molecular Sciences. MDPI AG: Basel. ISSN 1661-6596; e-ISSN 1422-0067, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    extremophiles; psychrophiles; cold adaptation; enzyme activity;biotechnology

Authors  Top 

Abstract
    Psychrophiles, i.e., organisms thriving permanently at near-zero temperatures, synthesize cold-active enzymes to sustain their cell cycle. These enzymes are already used in many biotechnological applications requiring high activity at mild temperatures or fast heat-inactivation rate. Most psychrophilic enzymes optimize a high activity at low temperature at the expense of substrate affinity, therefore reducing the free energy barrier of the transition state. Furthermore, a weak temperature dependence of activity ensures moderate reduction of the catalytic activity in the cold. In these naturally evolved enzymes, the optimization to low temperature activity is reached via destabilization of the structures bearing the active site or by destabilization of the whole molecule. This involves a reduction in the number and strength of all types of weak interactions or the disappearance of stability factors, resulting in improved dynamics of active site residues in the cold. Considering the subtle structural adjustments required for low temperature activity, directed evolution appears to be the most suitable methodology to engineer cold activity in biological catalysts.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors