IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Entrainment-driven modulation of Southern Ocean mixed layer properties and sea ice variability in CMIP5 models
Close, S.E.; Goosse, H. (2013). Entrainment-driven modulation of Southern Ocean mixed layer properties and sea ice variability in CMIP5 models. J. Geophys. Res. Oceans, 118(6): 2811-2827. dx.doi.org/10.1002/jgrc.20226
In: Journal of Geophysical Research. American Geophysical Union: Richmond. ISSN 0148-0227; e-ISSN 2156-2202, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    entrainment; sea ice; mixed layer; CMIP5

Authors  Top 

Abstract
    The evolution of the upper Southern Ocean hydrographic structure in response to the representative concentration pathways 4.5 (RCP 4.5) forcing scenario is analyzed using model data drawn from the coupled model intercomparison project phase 5 (CMIP5) archive. A robust freshening trend is evident, associated with an increase in stratification and decoupling of the upper ocean as the mixed layer gains buoyancy at a faster rate than the underlying ocean. The magnitudes of the individual terms of the salinity and heat budgets are evaluated. Convection-driven entrainment from the thermocline into the mixed layer is found to play a significant role in modulating the mixed layer salinity, whilst the heat budget of the mixed layer is dominated by a primary balance between atmospheric warming and the entrainment-modulated supply of oceanic heat from below the mixed layer. The relationship between oceanic heat storage below the mixed layer, ice thickness and atmospheric temperature is investigated, and a very disparate response noted amongst the models considered here. Based on this analysis, we hypothesize that the balance between the entrainment-modulated supply of oceanic heat from below the mixed layer and the heat supplied by the atmosphere may play an important role in determining the simulated sea ice variability.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors