IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Non-Gaussian properties of shallow water waves in crossing seas
Toffoli, A.; Onorato, M.; Osborne, A.R.; Monbaliu, J. (2008). Non-Gaussian properties of shallow water waves in crossing seas, in: Pelinovsky, E. et al. Extreme ocean waves. pp. 53-69. https://dx.doi.org/10.1007/978-1-4020-8314-3_3
In: Pelinovsky, E.; Kharif, Ch. (Ed.) (2008). Extreme ocean waves. Springer: Netherlands. ISBN 978-1-4020-8313-6. xiii, 196 pp., more

Available in  Authors 

Authors  Top 
  • Toffoli, A., more
  • Onorato, M.
  • Osborne, A.R.
  • Monbaliu, J., more

Abstract
    The Kadomtsev–Petviashvili equation, an extension of the Korteweg–de Vries equation in two horizontal dimensions, is here used to study the statistical properties of random shallow water waves in constant depth for crossing sea states. Numerical simulations indicate that the interaction of two crossing wave trains generates steep and high amplitude peaks, thus enhancing the deviation of the surface elevation from the Gaussian statistics. The analysis of the skewness and the kurtosis shows that the statistical properties depend on the angle between the two wave trains.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors