IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Genomic adaptation of giant viruses in polar oceans
Meng, L.; Delmont, T.O.; Gaia, M.; Pelletier, E.; Fernàndez-Guerra, A.; Chaffron, S.; Neches, R.Y.; Wu, J.; Kaneko, H.; Endo, H.; Ogata, H. (2023). Genomic adaptation of giant viruses in polar oceans. Nature Comm. 14(1): 6233. https://dx.doi.org/10.1038/s41467-023-41910-6
In: Nature Communications. Nature Publishing Group: London. ISSN 2041-1723; e-ISSN 2041-1723, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Meng, L.
  • Delmont, T.O.
  • Gaia, M.
  • Pelletier, E.
  • Fernàndez-Guerra, A.
  • Chaffron, S., more
  • Neches, R.Y.
  • Wu, J.
  • Kaneko, H.
  • Endo, H.
  • Ogata, H.

Abstract
    Despite being perennially frigid, polar oceans form an ecosystem hosting high and unique biodiversity. Various organisms show different adaptive strategies in this habitat, but how viruses adapt to this environment is largely unknown. Viruses of phyla Nucleocytoviricota and Mirusviricota are groups of eukaryote-infecting large and giant DNA viruses with genomes encoding a variety of functions. Here, by leveraging the Global Ocean Eukaryotic Viral database, we investigate the biogeography and functional repertoire of these viruses at a global scale. We first confirm the existence of an ecological barrier that clearly separates polar and nonpolar viral communities, and then demonstrate that temperature drives dramatic changes in the virus–host network at the polar–nonpolar boundary. Ancestral niche reconstruction suggests that adaptation of these viruses to polar conditions has occurred repeatedly over the course of evolution, with polar-adapted viruses in the modern ocean being scattered across their phylogeny. Numerous viral genes are specifically associated with polar adaptation, although most of their homologues are not identified as polar-adaptive genes in eukaryotes. These results suggest that giant viruses adapt to cold environments by changing their functional repertoire, and this viral evolutionary strategy is distinct from the polar adaptation strategy of their hosts.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors