IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Efficient long-range conduction in cable bacteria through nickel protein wires
Boschker, H.T.S.; Cook, P.L.M.; Polerecky, L.; Eachambadi, R.T.; Lozano, H.; Hidalgo-Martinez, S.; Khalenkow, D.; Spampinato, V.; Claes, N.; Kundu, P.; Wang, D.; Bals, S.; Sand, K.K.; Cavezza, F.; Hauffman, T.; Bjerg, J.T.; Skirtach, A.G.; Kochan, K.; McKee, M.; Wood, B.; Bedolla, D.; Gianoncelli, A.; Geerlings, N.M.J.; Van Gerven, N.; Remaut, H.; Remaut, H.; Geelhoed, J.S.; Millan-Solsona, R.; Fumagalli, L.; Nielsen, L.P.; Franquet, A.; Manca, J.V.; Gomila, G.; Meysman, F.J.R. (2021). Efficient long-range conduction in cable bacteria through nickel protein wires. Nature Comm. 12: 3996. https://dx.doi.org/10.1038/s41467-021-24312-4
In: Nature Communications. Nature Publishing Group: London. ISSN 2041-1723; e-ISSN 2041-1723, more
Peer reviewed article  

Available in  Authors 

Keywords
    Marine/Coastal; Fresh water

Authors  Top 
  • Boschker, H.T.S., more
  • Cook, P.L.M.
  • Polerecky, L.
  • Eachambadi, R.T., more
  • Lozano, H.
  • Hidalgo-Martinez, S., more
  • Khalenkow, D.
  • Spampinato, V.
  • Claes, N.
  • Kundu, P.
  • Wang, D.
  • Bals, S., more
  • Sand, K.K.
  • Cavezza, F.
  • Hauffman, T.
  • Bjerg, J.T.
  • Skirtach, A.G.
  • Kochan, K.
  • McKee, M.
  • Wood, B.
  • Bedolla, D.
  • Gianoncelli, A.
  • Geerlings, N.M.J.
  • Van Gerven, N.
  • Remaut, H.
  • Remaut, H.
  • Geelhoed, J.S., more
  • Millan-Solsona, R.
  • Fumagalli, L.
  • Nielsen, L.P.
  • Franquet, A.
  • Manca, J.V.
  • Gomila, G.
  • Meysman, F.J.R., more

Abstract
    Filamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but their chemical structure and underlying electron transport mechanism remain unresolved. Here, we combine high-resolution microscopy, spectroscopy, and chemical imaging on individual cable bacterium filaments to demonstrate that the periplasmic wires consist of a conductive protein core surrounded by an insulating protein shell layer. The core proteins contain a sulfur-ligated nickel cofactor, and conductivity decreases when nickel is oxidized or selectively removed. The involvement of nickel as the active metal in biological conduction is remarkable, and suggests a hitherto unknown form of electron transport that enables efficient conduction in centimeter-long protein structures.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors