IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

16SrDNA pyrosequencing of the Mediterranean gorgonian Paramuricea clavata reveals a link among alterations in bacterial holobiont members, anthropogenic influence and disease outbreaks
Vezzulli, L.; Pezzati, E.; Huete-Stauffer, C.; Pruzzo, C.; Cerrano, C. (2013). 16SrDNA pyrosequencing of the Mediterranean gorgonian Paramuricea clavata reveals a link among alterations in bacterial holobiont members, anthropogenic influence and disease outbreaks. PLoS One 8(6): e67745. https://dx.doi.org/10.1371/journal.pone.0067745
In: PLoS One. Public Library of Science: San Francisco. ISSN 1932-6203; e-ISSN 1932-6203, more
Peer reviewed article  

Available in  Authors | Dataset 

Keyword
    Marine/Coastal

Authors  Top | Dataset 
  • Vezzulli, L.
  • Pezzati, E.
  • Huete-Stauffer, C.
  • Pruzzo, C.
  • Cerrano, C.

Abstract
    Mass mortality events of benthic invertebrates in the Mediterranean Sea are becoming an increasing concern with catastrophic effects on the coastal marine environment. Sea surface temperature anomalies leading to physiological stress, starvation and microbial infections were identified as major factors triggering animal mortality. However the highest occurrence of mortality episodes in particular geographic areas and occasionally in low temperature deep environments suggest that other factors play a role as well. We conducted a comparative analysis of bacterial communities associated with the purple gorgonian Paramuricea clavata, one of the most affected species, collected at different geographic locations and depth, showing contrasting levels of anthropogenic disturbance and health status. Using massive parallel 16SrDNA gene pyrosequencing we showed that the bacterial community associated with healthy P. clavata in pristine locations was dominated by a single genus Endozoicomonas within the order Oceanospirillales which represented ∼90% of the overall bacterial community. P. clavata samples collected in human impacted areas and during disease events had higher bacterial diversity and abundance of disease-related bacteria, such as vibrios, than samples collected in pristine locations whilst showed a reduced dominance of Endozoicomonas spp. In contrast, bacterial symbionts exhibited remarkable stability in P. clavata collected both at euphotic and mesophotic depths in pristine locations suggesting that fluctuations in environmental parameters such as temperature have limited effect in structuring the bacterial holobiont. Interestingly the coral pathogen Vibrio coralliilyticus was not found on diseased corals collected during a deep mortality episode suggesting that neither temperature anomalies nor recognized microbial pathogens are solely sufficient to explain for the events. Overall our data suggest that anthropogenic influence may play a significant role in determining the coral health status by affecting the composition of the associated microbial community. Environmental stressful events and microbial infections may thus be superimposed to compromise immunity and trigger mortality outbreaks.

Dataset
  • Linares, Cristina; Figuerola, Laura; Gómez-Gras, Daniel; Pagès-Escolà, Marta; Olvera, Àngela, Aubach, Àlex; Amate, Roger; Figuerola, Blanca; Kersting, Diego; Ledoux, Jean-Baptiste; López-Sanz, Àngel; López-Sendino, Paula; Medrano, Alba; Garrabou, Joaquim; (2020); CorMedNet- Distribution and demographic data of habitat-forming invertebrate species from Mediterranean coralligenous assemblages between 1882 and 2019, more

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors | Dataset