IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Prediction of dynamic strains on a monopile offshore wind turbine using virtual sensors
Iliopoulos, A.N.; Weijtjens, W.; Van Hemelrijck, D.; Devriendt, C. (2015). Prediction of dynamic strains on a monopile offshore wind turbine using virtual sensors. Journal of Physics: Conference Series 628: 012108. https://dx.doi.org/10.1088/1742-6596/628/1/012108
In: Journal of Physics: Conference Series. IOP Publishing: Bristol. ISSN 1742-6588; e-ISSN 1742-6596, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Iliopoulos, A.N., more
  • Weijtjens, W., more
  • Van Hemelrijck, D., more
  • Devriendt, C., more

Abstract
    The monitoring of the condition of the offshore wind turbine during its operational states offers the possibility of performing accurate assessments of the remaining life-time as well as supporting maintenance decisions during its entire life. The efficacy of structural monitoring in the case of the offshore wind turbine, though, is undermined by the practical limitations connected to the measurement system in terms of cost, weight and feasibility of sensor mounting (e.g. at muddline level 30m below the water level). This limitation is overcome by reconstructing the full-field response of the structure based on the limited number of measured accelerations and a calibrated Finite Element Model of the system. A modal decomposition and expansion approach is used for reconstructing the responses at all degrees of freedom of the finite element model. The paper will demonstrate the possibility to predict dynamic strains from acceleration measurements based on the aforementioned methodology. These virtual dynamic strains will then be evaluated and validated based on actual strain measurements obtained from a monitoring campaign on an offshore Vestas V90 3 MW wind turbine on a monopile foundation.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors