Toxicological availability of nickel to the benthic oligochaete Lumbriculus variegatus
Vandegehuchte, M.B.; Roman, Y.E.; Nguyen, L.T.H.; Janssen, C.R.; De Schamphelaere, K.A.C. (2007). Toxicological availability of nickel to the benthic oligochaete Lumbriculus variegatus. Environ. Int. 33(6): 736-742. https://dx.doi.org/10.1016/j.envint.2007.02.006
In: Environment International. Pergamon: New York. ISSN 0160-4120; e-ISSN 1873-6750, more
| |
Keywords |
Chemical elements > Metals > Transition elements > Heavy metals > Nickel Metal Sediments Toxicity Fresh water |
Authors | | Top |
- Vandegehuchte, M.B., more
- Roman, Y.E.
- Nguyen, L.T.H., more
|
- Janssen, C.R., more
- De Schamphelaere, K.A.C., more
|
|
Abstract |
It is generally accepted that the bioavailability of metals in sediments is influenced by the presence of acid volatile sulfides (AVS). The pore water hypothesis predicts that, if the molar concentration of simultaneously extracted metals (SEM) in a sediment is smaller than the molar concentration of AVS, the free metal ion activity in the pore water is very small and that consequently no metal toxicity in short-term toxicity tests is observed. In this study we examined (1) if this concept can be extended to predict the absence of chronic Ni toxicity to the oligochaete deposit-feeding worm Lumbriculus variegatus and (2) if the organic carbon normalized excess SEM; i.e. [SEM-AVS]/fOC predicts the magnitude of Ni toxicity to L. variegatus. A 28-day toxicity experiment was performed in which biomass production of L. variegatus was determined in two natural sediments with different [AVS] and fOC, spiked at different Ni concentrations. The absence of toxicity is predicted correctly by the [SEM-AVS] < 0 criterion when only the 0-1 cm surface layer of the sediment is considered, but not when the whole bulk sediment is considered (0-3 cm). In both sediments, the same [SEM-AVS]/fOC at the surface corresponds with a similar decrease in L. variegatus biomass. Thus, [SEM-AVS]/fOC in the surface layer accurately predicts the magnitude of toxicity. This measure is therefore a good estimator of toxicologically available Ni. On the other hand, the free Ni2+ ion activity in the overlying water appeared to be an equally good predictor of the magnitude of toxicity. Consequently, it was not possible to determine the relative importance of the overlying water and pore water exposure route with the semi-static laboratory experiments. |
|