one publication added to basket [362805] | Comparative analysis of the core proteomes among the Pseudomonas major evolutionary groups reveals species-specific adaptations for Pseudomonas aeruginosa and Pseudomonas chlororaphis
Nikolaidis, M.; Mossialos, D.; Oliver, S.G.; Amoutzias, G.D. (2020). Comparative analysis of the core proteomes among the Pseudomonas major evolutionary groups reveals species-specific adaptations for Pseudomonas aeruginosa and Pseudomonas chlororaphis. Diversity 12(8): 289. https://dx.doi.org/10.3390/d12080289
In: Diversity. MDPI: Basel. ISSN 1424-2818; e-ISSN 1424-2818, more
| |
Keywords |
Prokaryotes > Microorganisms > Bacteria > Gracilicutes > Pseudomonadaceae > Pseudomonas > Pseudomonas chlororaphis Pseudomonas Migula, 1894 [WoRMS]; Pseudomonas aeruginosa Marine/Coastal |
Author keywords |
Pseudomonas; core-proteome; phylogenomics; comparative genomics; species-specific adaptations |
Authors | | Top |
- Nikolaidis, M.
- Mossialos, D.
- Oliver, S.G.
- Amoutzias, G.D., more
|
|
|
Abstract |
The Pseudomonas genus includes many species living in diverse environments and hosts. It is important to understand which are the major evolutionary groups and what are the genomic/proteomic components they have in common or are unique. Towards this goal, we analyzed 494 complete Pseudomonas proteomes and identified 297 core-orthologues. The subsequent phylogenomic analysis revealed two well-defined species (Pseudomonas aeruginosa and Pseudomonas chlororaphis) and four wider phylogenetic groups (Pseudomonas fluorescens, Pseudomonas stutzeri, Pseudomonas syringae, Pseudomonas putida) with a sufficient number of proteomes. As expected, the genus-level core proteome was highly enriched for proteins involved in metabolism, translation, and transcription. In addition, between 39–70% of the core proteins in each group had a significant presence in each of all the other groups. Group-specific core proteins were also identified, with P. aeruginosa having the highest number of these and P. fluorescens having none. We identified several P. aeruginosa-specific core proteins (such as CntL, CntM, PlcB, Acp1, MucE, SrfA, Tse1, Tsi2, Tse3, and EsrC) that are known to play an important role in its pathogenicity. Finally, a holin family bacteriocin and a mitomycin-like biosynthetic protein were found to be core-specific for P. cholororaphis and we hypothesize that these proteins may confer a competitive advantage against other root-colonizers. |
|