IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [348341]
Laboratory data on wave propagation through vegetation with following and opposing currents
Hu, Z.; Lian, S.; Wei, H.; Li, Y.; Stive, M.; Suzuki, T. (2021). Laboratory data on wave propagation through vegetation with following and opposing currents. ESSD 13: 4987–4999. https://dx.doi.org/10.5194/essd-13-4987-2021
In: Earth System Science Data. Copernicus: Göttingen. ISSN 1866-3508; e-ISSN 1866-3516, more
Peer reviewed article  

Available in  Authors 

Keywords
    Coastal protection > Coastal safety against extreme storms > Soft coastal defences
    Physical modelling
    Marine/Coastal
Author keywords
    Wave attenuation; vegetation; Flume experiment; following currents; opposing currents; Velocity profile; drag coefficients

Project Top | Authors 
  • Supervision internship student on SWASH-VEG model development, more

Authors  Top 
  • Hu, Z., more
  • Lian, S.
  • Wei, H.
  • Li, Y.
  • Stive, M.
  • Suzuki, T., more

Abstract
    Coastal vegetation has been increasingly recognized as an effective buffer against wind waves. Recent laboratory studies have considered realistic vegetation traits and hydrodynamic conditions, which advanced our understanding of the wave dissipation process in vegetation (WDV) in field conditions. In intertidal environments, waves commonly propagate into vegetation fields with underlying tidal currents, which may alter the WDV process. A number of experiments addressed WDV with following currents, but relatively few experiments have been conducted to assess WDV with opposing currents. Additionally, while the vegetation drag coefficient is a key factor influencing WDV, it is rarely reported for combined wave–current flows. Relevant WDV and drag coefficient data are not openly available for theory or model development. This paper reports a unique dataset of two flume experiments. Both experiments use stiff rods to mimic mangrove canopies. The first experiment assessed WDV and drag coefficients with and without following currents, whereas the second experiment included complementary tests with opposing currents. These two experiments included 668 tests covering various settings of water depth, wave height, wave period, current velocity and vegetation density. A variety of data, including wave height, drag coefficient, in-canopy velocity and acting force on mimic vegetation stem, are recorded. This dataset is expected to assist future theoretical advancement on WDV, which may ultimately lead to a more accurate prediction of wave dissipation capacity of natural coastal wetlands. The dataset is available from figshare with clear instructions for reuse (https://doi.org/10.6084/m9.figshare.13026530.v2, Hu et al., 2020). The current dataset will expand with additional WDV data from ongoing and planned observation in natural mangrove wetlands.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors