IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [322961]
On the evolution and physiology of cable bacteria
Kjeldsen, K.U.; Schreiber, L.; Thorup, C.A.; Boesen, T.; Bjerg, J.T.; Yang, T.; Dueholm, M.S.; Larsen, S.; Risgaard-Petersen, N.; Nierychlo, M.; Schmid, M.; Bøggild, A.; van de Vossenberg, J.; Geelhoed, J.S.; Meysman, F.J.R.; Wagner, M.; Nielsen, P.H.; Nielsen, L.P.; Schramm, A. (2019). On the evolution and physiology of cable bacteria. Proc. Natl. Acad. Sci. U.S.A. 116(38): 19116-19125. https://dx.doi.org/10.1073/pnas.1903514116
In: Proceedings of the National Academy of Sciences of the United States of America. The Academy: Washington, D.C.. ISSN 0027-8424; e-ISSN 1091-6490, more
Peer reviewed article  

Available in  Authors 

Keywords
    Desulfobulbaceae [WoRMS]
    Marine/Coastal; Fresh water
Author keywords
    electromicrobiology; microbial genome; cable bacteria; microbialevolution; microbial physiology

Authors  Top 
  • Kjeldsen, K.U.
  • Schreiber, L.
  • Thorup, C.A.
  • Boesen, T.
  • Bjerg, J.T.
  • Yang, T.
  • Dueholm, M.S.
  • Larsen, S.
  • Risgaard-Petersen, N.
  • Nierychlo, M.
  • Schmid, M.
  • Bøggild, A.
  • van de Vossenberg, J.
  • Geelhoed, J.S., more
  • Meysman, F.J.R., more
  • Wagner, M.
  • Nielsen, P.H.
  • Nielsen, L.P.
  • Schramm, A.

Abstract
    Cable bacteria of the family Desulfobulbaceae form centimeter-long filaments comprising thousands of cells. They occur worldwide in the surface of aquatic sediments, where they connect sulfide oxidation with oxygen or nitrate reduction via long-distance electron transport. In the absence of pure cultures, we used single-filament genomics and metagenomics to retrieve draft genomes of 3 marine Candidatus Electrothrix and 1 freshwater Ca. Electronema species. These genomes contain >50% unknown genes but still share their core genomic makeup with sulfate-reducing and sulfur-disproportionating Desulfobulbaceae, with few core genes lost and 212 unique genes (from 197 gene families) conserved among cable bacteria. Last common ancestor analysis indicates gene divergence and lateral gene transfer as equally important origins of these unique genes. With support from metaproteomics of a Ca. Electronema enrichment, the genomes suggest that cable bacteria oxidize sulfide by reversing the canonical sulfate reduction pathway and fix CO2 using the Wood–Ljungdahl pathway. Cable bacteria show limited organotrophic potential, may assimilate smaller organic acids and alcohols, fix N2, and synthesize polyphosphates and polyglucose as storage compounds; several of these traits were confirmed by cell-level experimental analyses. We propose a model for electron flow from sulfide to oxygen that involves periplasmic cytochromes, yet-unidentified conductive periplasmic fibers, and periplasmic oxygen reduction. This model proposes that an active cable bacterium gains energy in the anodic, sulfide-oxidizing cells, whereas cells in the oxic zone flare off electrons through intense cathodic oxygen respiration without energy conservation; this peculiar form of multicellularity seems unparalleled in the microbial world.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors