In vitro culture of peripheral blood leucocytes (PBLs) is currently used in toxicological studies of marine mammals. However, blood cells of wild individuals are exposed in vivo to environmental contaminants before being isolated and exposed to contaminants in vitro. The aim of this study was to highlight potential relationships between blood contaminant levels and in vitro peripheral blood lymphocyte proliferation in free-ranging adult harbour seals (Phoca vitulina) from the North Sea. Blood samples of 18 individuals were analyzed for trace elements (Fe, Zn, Se, Cu, Hg, Pb, Cd) and persistent organic contaminants and metabolites (SPCBs, SHO-PCBs, SPBDEs, 2-MeO-BDE68 and 6-MeO-BDE47, SDDXs, hexachlorobenzene, oxychlordane, trans-nonachlor, pentachlorophenol and tribromoanisole). The same samples were used to determine the haematology profiles, cell numbers and viability, as well as the in vitro ConA-induced lymphocyte proliferation expressed as a stimulation index (SI). Correlation tests (Bravais-Pearson) and Principal Component Analysis with multiple regression revealed no statistically significant relationship between the lymphocyte SI and the contaminants studied. However, the number of lymphocytes per millilitre of whole blood appeared to be negatively correlated to pentachlorophenol (r = -0.63, p = 0.005). In adult harbour seals, the interindividual variations of in vitro lymphocyte proliferation did not appear to be directly linked to pollutant levels present in the blood, and it is likely that other factors such as age, life history, or physiological parameters have an influence. In a general manner, experiments with in vitro immune cell cultures of wild marine mammals should be designed so as to minimize confounding factors in which case they remain a valuable tool to study pollutant effects in vitro. |