Vinaora Nivo SliderVinaora Nivo SliderVinaora Nivo SliderVinaora Nivo Slider
Phytoplankton bloom
MODIS ocean colour image
Foam on the beach: A natural phenomenon?
Monitoring the earth oceans from space

isecalogo

log in
[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [248195]
Can benthic community structure be used to predict the process of bioturbation in real ecosystems?
Queirós, A.M.; Stephens, N.; Cook, R.; Ravaglioli, C.; Nunes, J.; Dashfield, S.; Harris, C.; Tilstone, G.H.; Fishwick, J.; Braeckman, U.; Somerfield, P.J.; Widdicombe, S. (2015). Can benthic community structure be used to predict the process of bioturbation in real ecosystems? Prog. Oceanogr. 137(Part B): 559-569. http://dx.doi.org/10.1016/j.pocean.2015.04.027
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Queirós, A.M.
  • Stephens, N.
  • Cook, R.
  • Ravaglioli, C.
  • Nunes, J.
  • Dashfield, S.
  • Harris, C.
  • Tilstone, G.H., more
  • Fishwick, J.
  • Braeckman, U., more
  • Somerfield, P.J.
  • Widdicombe, S., more

Abstract
    Disentangling the roles of environmental change and natural environmental variability on biologically mediated ecosystem processes is paramount to predict future marine ecosystem functioning. Bioturbation, the biogenic mixing of sediments, has a regulating role in marine biogeochemical processes. However, our understanding of bioturbation as a community level process and of its environmental drivers is still limited by loose use of terminology, and a lack of consensus about what bioturbation is. To help resolve these challenges, this empirical study investigated the links between four different attributes of bioturbation (bioturbation depth, activity and distance, and biodiffusive transport); the ability of an index of bioturbation (BPc) to predict each of them; and their relation to seasonality, in a shallow coastal system – the Western Channel Observatory, UK. Bioturbation distance depended on changes in benthic community structure, while the other three attributes were more directly influenced by seasonality in food availability. In parallel, BPc successfully predicted bioturbation distance but not the other attributes of bioturbation. This study therefore highlights that community bioturbation results from this combination of processes responding to environmental variability at different time-scales. However, community level measurements of bioturbation across environmental variability are still scarce, and BPc is calculated using commonly available data on benthic community structure and the functional classification of invertebrates. Therefore, BPc could be used to support the growth of landscape scale bioturbation research, but future uses of the index need to consider which bioturbation attributes the index actually predicts. As BPc predicts bioturbation distance, estimated here using a random-walk model applicable to community settings, studies using either of the metrics should be directly comparable and contribute to a more integrated future for bioturbation research.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 
adrinord vito PML greenwich

VLIZ.

nausicaa

cemare logo NIOZ2 

Part-financed by ERDF through the Interreg IV A 2 Seas Programme “Investing in your Future”
INTERREG IVa 2Seas Project

 “The document reflects the author's views. The INTERREG IVA 2 Seas Programme Authorities are not liable for any use that may be made of the information contained therein.”

Website developed and maintained by VLIZ

Subscribe This email address is being protected from spambots. You need JavaScript enabled to view it. to receive the ISECA newsletter by email