Comparison of Ediacaran platform and slope d238U records in South China: implications for global-ocean oxygenation and the origin of the Shuram Excursion
Cao, M.; Daines, S.J.; Lenton, T.M.; Cui, H.; Algeo, T.J.; Dahl, T.W.; Shi, W.; Chen, Z.-Q.; Anbar, A.; Zhou, Y.-Q. (2020). Comparison of Ediacaran platform and slope d238U records in South China: implications for global-ocean oxygenation and the origin of the Shuram Excursion. Geochim. Cosmochim. Acta 287: 111-124. https://hdl.handle.net/10.1016/j.gca.2020.04.035
In: Geochimica et Cosmochimica Acta. Elsevier: Oxford,New York etc.. ISSN 0016-7037; e-ISSN 1872-9533
The Ediacaran Shuram negative carbon isotope excursion (SE) records major paleoceanographic changes during the late Neoproterozoic, possibly linked to a global oceanic oxygenation event, yet its cause(s) remain uncertain. Earlier studies of the upper Ediacaran Doushantuo Formation in South China based on local redox proxies have documented strong spatial redox heterogeneity along shelf-to-basin transects, but variations of d238U (a global redox proxy) have not yet been examined in deep-water SE carbonates. In this study, we examined d238U variations through the SE in the upper slope Siduping section. Similar to platform SE sections, Siduping exhibits a shift toward higher d238U values correlative with the peak of the SE (i.e., maximum negative d13Ccarb), confirming inferences of global ocean oxygenation during the SE. This raises an apparent paradox, because a global negative carbon isotope excursion implies net oxidant consumption, requiring an ocean-based oxygenation mechanism. We hypothesize that an increase in the efficiency of phosphorus burial due to a plankton-driven shift from dominantly dissolved organic matter (DOM) cycling to greater particulate organic matter (POM) export depleted the ocean of nutrient phosphorus. By producing a steep redox gradient close to the sediment-water interface, we suggest that ocean oxygenation also triggered a globally simultaneous diagenetic event in which isotopically light d13Ccarb was precipitated in authigenic carbonate minerals. This scenario can account for d238U differences between shallow-water and deep-water carbonates, which reflect precipitation of relatively larger amounts of authigenic carbonate minerals in shallow-water settings, generating both a larger negative d13Ccarb shift and a larger early diagenetic d238U offset.
All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy
Web site hosted and maintained by Flanders Marine Institute (VLIZ)
Webmaster info@vliz.be Number of visitors: 1090369 - Total hits: 7333632 (since 2006-01-17)