Lateralization, i.e. the preferential use of one side of the body, may convey fitness benefits for organisms within rapidly-changing environments, by optimizing separate and parallel processing of different information between the two brain hemispheres. In coral reef-fishes, the movement of larvae from planktonic to reef environments (recruitment) represents a major life-history transition. This transition requires larvae to rapidly identify and respond to sensory cues to select a suitable habitat that facilitates survival and growth. This ‘recruitment’ is critical for population persistence and resilience. In aquarium experiments, larval Acanthurus triostegus preferentially used their right-eye to investigate a variety of visual stimuli. Despite this, when held in in situ cages with predators, those larvae that previously favored their left-eye exhibited higher survival. These results support the “brain’s right-hemisphere” theory, which predicts that the right-eye (i.e.left-hemisphere) is used to categorize stimuli while the left-eye (i.e.right-hemisphere) is used to inspect novel items and initiate rapid behavioral-responses. While these experiments confirm that being highly lateralized is ecologically advantageous, exposure to chlorpyrifos, a pesticide often inadvertently added to coral-reef waters, impaired visual-lateralization. This suggests that chemical pollutants could impair the brain function of larval fishes during a critical life-history transition, potentially impacting recruitment success.
All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy
Web site hosted and maintained by Flanders Marine Institute (VLIZ)
Webmaster info@vliz.be Number of visitors: 1012063 - Total hits: 6971599 (since 2006-01-17)