FISHCONNECT

IMIS Project Number: 4229
We quantify the role of physical and biological constraints on the recruitment process and the realized dispersal of exploited marine flatfishes. Marine populations display some of the most extreme patterns of spatial and temporal heterogeneity in abundance, settlement rates and other demographic factors. Usually, simplified metrics and idealized models are used to describe their interactions. However, the combination of physical and biological information has been proven very effective, for instance to understand dispersal. We develop an Individual Biological Model coupled to a hydrodynamical model to test a range of hypotheses on the importance of factors either regulating or adapting connectivity on various spatial and temporal scales. The commercially exploited sole will be studied as a model for larval dispersal. Patterns and dynamics will be assessed in other exploited flatfishes (plaice, turbot and brill) in a comparative connectivity analysis. We will validate the model using empirical demographic and genetic data from the central and southern North Sea and eastern English Channel. The model will be used to predict the impact of natural and anthropogenic factors on marine population connectivity and resilience.

Cruises

Plan code Principal Investigator Duration Shared campaigns