IMIS

Publicaties | Instituten | Personen | Datasets | Projecten | Kaarten
[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

Habitat traits and food availability determine the response of marine invertebrates to ocean acidification
Pansch, C.; Schaub, I.; Havenhand, J.; Wahl, M. (2014). Habitat traits and food availability determine the response of marine invertebrates to ocean acidification. Glob. Chang. Biol. 20(3): 765-777. https://dx.doi.org/10.1111/gcb.12478
In: Global Change Biology. Blackwell Publishers: Oxford. ISSN 1354-1013; e-ISSN 1365-2486, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Trefwoorden
    Climate Change
    Environmental Managers & Monitoring
    Marine Sciences > Biodiversity
    Marine Sciences > Marine Sciences General
    Scientific Community
    Scientific Publication
    Marien/Kust
Author keywords
    adaptation; Amphibalanus (Balanus) improvisus ;barnacles;calcification;carry-over effects;energy availability;eutrophication;global change;naturally acidified ecosystem;ocean acidification

Project Top | Auteurs 
  • Association of European marine biological laboratories, meer

Auteurs  Top 
  • Pansch, C.
  • Schaub, I.
  • Havenhand, J.
  • Wahl, M.

Abstract
    Energy availability and local adaptation are major components in mediating the effects of ocean acidification (OA) on marine species. In a long-term study, we investigated the effects of food availability and elevated pCO2 (ca. 400, 1000 and 3000 μatm) on growth of newly settled Amphibalanus (Balanus) improvisus to reproduction, and on their offspring. We also compared two different populations, which were presumed to differ in their sensitivity to pCO2 due to differing habitat conditions: Kiel Fjord, Germany (Western Baltic Sea) with naturally strong pCO2 fluctuations, and the Tjärnö Archipelago, Sweden (Skagerrak) with far lower fluctuations. Over 20 weeks, survival, growth, reproduction and shell strength of Kiel barnacles were all unaffected by elevated pCO2, regardless of food availability. Moulting frequency and shell corrosion increased with increasing pCO2 in adults. Larval development and juvenile growth of the F1 generation were tolerant to increased pCO2, irrespective of parental treatment. In contrast, elevated pCO2 had a strong negative impact on survival of Tjärnö barnacles. Specimens from this population were able to withstand moderate levels of elevated pCO2 over 5 weeks when food was plentiful but showed reduced growth under food limitation. Severe levels of elevated pCO2 negatively impacted growth of Tjärnö barnacles in both food treatments. We demonstrate a conspicuously higher tolerance to elevated pCO2 in Kiel barnacles than in Tjärnö barnacles. This tolerance was carried over from adults to their offspring. Our findings indicate that populations from fluctuating pCO2 environments are more tolerant to elevated pCO2 than populations from more stable pCO2 habitats. We furthermore provide evidence that energy availability can mediate the ability of barnacles to withstand moderate CO2 stress. Considering the high tolerance of Kiel specimens and the possibility to adapt over many generations, near future OA alone does not seem to present a major threat for A. improvisus.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs