



FACULTY OF BIOSCIENCE ENGINEERING

# Marine pollution along the East African coast: problems and challenges

Colin Janssen, Maarten De Rycke and Lisbeth Van Cauwenberghe

**Ghent University** 

Laboratory of Environmental Toxicology and Aquatic Ecology



International workshop - Sustainable use of coastal and marine resources in Kenya: from research to societal benefits – Oct 27-29, 2014



# Unexplored beauty and richness of Kenyan marine waters/resources

- 600 km of coastline, supports livelihoods of 2.7 million people
- % contribution of these resources to coastal economy:
  - tourism (45%)
  - ports & shipping (15%),
  - (artisanal) fishing (6%)... but main source of income for 60,000 households
  - agricultural industry, mining, ...
- however: coastal and marine resources @ risk...
  - over-exploitation, overfishing, pollution, climate change, invasion of non-native species, rapidly growing human population...



Workshop goal: Sustainable use of coastal and marine resources in Kenya: from research to societal benefits

Linking Oceans & Human Health...
Coastal and open ocean

Societal issues & political decision making

INTERCONNECTIONS IN MARINE ENVIRONMENT & HEALTH



© VLIZ





#### Marine Ecosystem Change: a multiple driver problem





## Marine pollution: East Africa

### Brief (open) literature review

- Review Wepener & Degger:
  - 1960 2012
  - decline in number of papers from 1980s onwards
  - linked to absence of marine pollution monitoring programme
- Kenya?
  - fragmented: some papers on metals and nutrients...
  - no sustained monitoring of chemical substances (and others) in Kenyan waters



Wepener V. & Degger N., 2012. Status of marine pollution research in South Africa (1960 – present). Mar. Pol. Bull. 64:1508-1512.



## Marine pollution: international monitoring







**Table 3.1.** Overview of some major well-established international monitoring programmes and the contaminants and matrices they measure (after Roose and Brinkman, 2005)

| Organisation or programme <sup>1</sup> | Start of the programme | Parameters <sup>2,3</sup>   | Sample types                            |
|----------------------------------------|------------------------|-----------------------------|-----------------------------------------|
| АМАР                                   | 1978                   | HM, PCBs, PAHs, OCPs        | biota, sediment, water,<br>human tissue |
| HELCOM                                 | 1979                   | HM, PCBs, PAHs, OCPs, OTINs | biota, sediment, water                  |
| NS&T                                   | 1986                   | HM, PCBs, PAHs, OCPs        | biota, sediment                         |
| IMW                                    | 1965                   | HM, PCBs, PAHs, OCPs        | biota (bivalves)                        |
| OSPAR                                  | 1978                   | HM, PCBs, PAHs, OCPs, OTINs | biota, sediment                         |

Janssen C., Roose P. et al., 2011. Chemical pollution in Europe's seas. Marine Board Position Paper 16. Marine Board – ESF, Ostend, Belgium





OSPAR, 2010. Quality Status Report. OSPAR Commission. London. 176 pp.







OSPAR, 2010. Quality Status Report. OSPAR Commission. London. 176 pp.



## **Harmful Algal Blooms**

• Global distribution of marine toxins

...near monospecific, high density aggregations (millions of cells.l<sup>-1</sup>)

"Red tides"









## **Harmful Algal Blooms**

High biomass \_\_\_ anoxia & shading

Unpalatable gelatinous envelope \_\_\_ "starving" the food chain

Physical shape \_\_\_ damage to gill tissues

Marine toxins \_\_\_ neurotoxic to fish, birds, mammals and humans



## **HABs**







Journal of Environment and Earth Science ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online) Vol. 3, No.9, 2013



# Potentially Harmful Algae along the Kenyan Coast: A Norm or Threat. Linet et al.

| Human illness                   | Main toxin   | Producers present in the Kenyan coastal zone        |
|---------------------------------|--------------|-----------------------------------------------------|
| Amnesic shellfish poisoning     | Domoic acid  | Pseudo-Nitzschia spp. ; Nitzschia spp.              |
| Paralytic shellfish poisoning   | Saxitoxin    | Alexandrium spp. ; Gymnodinium spp. ; Anabaena spp. |
| Diarrhetic shellfish poisoning  | Okadaic acid | Prorocentrum spp. ; Dinophysis spp.                 |
| Azaspiracid shellfish poisoning | Azaspiracid  | Protoperidinium spp. ; Azadinium spp.               |
| Ciguetera fish poisoning        | Ciguatoxin   | Gambierdiscus spp.                                  |
| Ciguetera fish poisoning        | Palytoxin    | Ostreopsis spp.                                     |

#### Complex compounds with many structural subtypes e.g.



#### **Brevetoxin A**

Brevetoxin-1 (PbTx-1) R = -CH<sub>2</sub>C(=CH<sub>2</sub>)CHO Brevetoxin-7 (PbTx-7) R = -CH<sub>2</sub>C(=CH<sub>2</sub>)CH<sub>2</sub>OH Brevetoxin-10 (PbTx-10) R = -CH<sub>2</sub>CH(-CH<sub>3</sub>)CH<sub>2</sub>OH



#### Brevetoxin B

Brevetoxin-2 (PbTx-2) R = -CH2C(=CH2)CHO
Brevetoxin-3 (PbTx-3) R = -CH2C(=CH2)CH2OH
Brevetoxin-9 (PbTx-9) R

Brevetoxin-8 (PbTx-8) R = -CH2COCH2CI

Brevetoxin-9 (PbTx-9) R = -CH2CH(CH3)CH2OH

Linet K. et al., 2013. Potentially harrmful algae along the Kenyan coast: a norm or threat. J. Env. Earth Science 3: 1-11.

## **HABs**



### Kenya @ Risk?... Pseudo-nitzschia spp. case



#### <u>lf:</u>

- Natural reported density (in Kenya) increases from 830 cells.l<sup>-1</sup> to 8300 cells.l<sup>-1</sup>
- Average domoic acid content per cell: 0.9 pg.cell<sup>-1</sup> (0.2-1.5 pg.cell<sup>-1</sup>)
- Average filtration rate of shellfish: 5 l.h<sup>-1</sup> (0.5-10 liters.h<sup>-1</sup>)
- Accumulation rate: 8% of consumed particulate domoic acid
- Average weight of commercial shellfish: 9 g (3-15 g.individual<sup>-1</sup>)
- Legal limit of domoic acid in Europe: 20 μg.g<sup>-1</sup>

#### Then:

Shellfish take up approximately 72 µg (7.9 µg.g<sup>-1</sup>) DA every day

- ➤ It takes 2.5 days to reach the legal EU limit
- > Some species need up to a year to reduce the toxins below detection limits

This would be considered a **small-scale bloom** as dense *Pseudo-Nitzschia* spp. blooms can exceed 1000 cells.ml<sup>-1</sup> and last for weeks!

Natural concentrations taken from Kiteresi *et al.* 2013/ DA levels: De Rijcke et al. 2014 / Filtration rates: Uline et al. 2013 / Ecomare / Accumulation rate: Novaczek et al. 1991 / Average shellfish weights: Van Cauwenberghe et al. 2014 / Depuration rates: Blanco et al. 2002

## **HABs**



## **Harmful Algal Blooms**



- Need for routine monitoring
  Analytical methods: UHPLC-MS, ELISA, ...
- Phytoplankton monitoring: skilled experts, automated systems
- Satellite imagery: Chl A, surface t°,

www.rsmarinesa.org.za











## Why are microplastics dangerous?

Ingestion of microplastics demonstrated for several marine invertebrate species



Because of their <u>small dimensions</u>, microplastics become available for ingestion by organisms commonly not affected by larger marine debris

Size range of sand particles and algae





Sand grains



## Why are microplastics dangerous?

Transport of sorbed environmental pollutants and toxic compounds



Concentrations can be up to a milion times higher than the surrounding seawater!

Environm

Environmental pollutant



Microplastic

Table: Dangerous additives and monomers present in plastics

| Compound       |                 | Toxicity                          |
|----------------|-----------------|-----------------------------------|
| Phthalates     | Plasticizer     | Endocrine disruptor               |
| PBDE           | Flame retardant | Neurotoxine & endocrine disruptor |
| Vinyl chloride | Monomer of PVC  | Carginogen                        |







# First results for Western Indian Ocean region (Gazi Bay, Kenya)





UGent, - KMFRI - VLIZ cooperation:

Lisbeth Van Cauwenberghe, Charles M. Kosore et al., Jan Mees & Colin Janssen



#### Some examples







500µm



First results for Western Indian Ocean region (Gazi Bay, Kenya)





# First results for Western Indian Ocean region (Gazi Bay, Kenya)



#### **Very high degree of pollution**

Comparable to the concentrations measured in some of the most polluted sites in the world:

Venice: 672 - 2175 items/kg

(Vianello et al., 2013)

Wadden Sea: 3600 – 49 600 items/kg

(Liebezeit & Dubaish, 2012)

#### High degree of pollution

Similar concentrations as detected in the North Sea and East Pacific

(using similar sampling technique: 50µm net) (Desforges et al., 2014)



### **Linking Oceans & Human Health...**

#### Needs:

- sustained fundamental and applied research will lead to...
- improved assessment, monitoring and prediction of potential risks and...
- sustainable management of coastal and marine resources for...
- the benefits of man and the environment



