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Abstract. As the availability of spatially distributed data sets

for distributed rainfall-runoff modelling is strongly increas-

ing, more attention should be paid to the influence of the

quality of the data on the calibration. While a lot of progress

has been made on using distributed data in simulations of hy-

drological models, sensitivity of spatial data with respect to

model results is not well understood. In this paper we develop

a spatial sensitivity analysis method for spatial input data

(snow cover fraction – SCF) for a distributed rainfall-runoff

model to investigate when the model is differently subjected

to SCF uncertainty in different zones of the model. The anal-

ysis was focussed on the relation between the SCF sensitivity

and the physical and spatial parameters and processes of a

distributed rainfall-runoff model. The methodology is tested

for the Biebrza River catchment, Poland, for which a dis-

tributed WetSpa model is set up to simulate 2 years of daily

runoff. The sensitivity analysis uses the Latin-Hypercube

One-factor-At-a-Time (LH-OAT) algorithm, which employs

different response functions for each spatial parameter rep-

resenting a 4× 4 km snow zone. The results show that the

spatial patterns of sensitivity can be easily interpreted by co-

occurrence of different environmental factors such as geo-

morphology, soil texture, land use, precipitation and temper-

ature. Moreover, the spatial pattern of sensitivity under dif-

ferent response functions is related to different spatial param-

eters and physical processes. The results clearly show that the

LH-OAT algorithm is suitable for our spatial sensitivity anal-

ysis approach and that the SCF is spatially sensitive in the

WetSpa model. The developed method can be easily applied

to other models and other spatial data.

1 Introduction

Distributed hydrological models are developed to improve

the simulation and analysis of physically based, spatially dis-

tributed hydrological processes. While more spatially dis-

tributed parameters and input data are becoming available

for modelling, most attention is paid to the influence of the

data on the quality of the calibration and to the capacity of

models to reproduce measured output time series. Several

researchers focussed on the effect of using distributed pre-

cipitation data in hydrological models. Obled et al. (1994)

showed with a semi-distributed TOPMODEL (Beven et al.,

1995) application that although the number of stations used

to generate a rainfall field appeared to have an important

impact on discharge simulation, the response of the model

to changes in the rainfall field was marginal. Schuurmans

and Bierkens (2007) used the fully distributed SIMGRO

(Querner, 1997) model to analyze the effect of rainfall fields

generated on the basis of rain gauge and radar data on dis-

charge, soil moisture and groundwater heads. In their study,

the distributed data outperformed lumped data in the sim-

ulation results. A similar study was conducted by Fu et al.

(2011), who used the MIKE SHE model (Abbott et al., 1986).

However, in this case a clear effect of rainfall distribution

was visible only on groundwater head and recharge. In sum-

mary, the advantage of spatially distributed precipitation over

lumped data may vary depending on the model, study area

and processes under consideration. Nonetheless, the spatial

aspect of model parameters, input data and the way they are

implemented in models clearly is an important research is-

sue.
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Several studies address classical sensitivity and uncer-

tainty analysis methods to spatial data and parameters. An

interesting stochastic uncertainty approach for spatial rain-

fall fields in the dynamic TOPMODEL (Beven and Freer,

2001) was presented by Younger et al. (2009). The results

were obtained by dividing a catchment into homogeneous ir-

regular zones in which the precipitation was randomly per-

turbed by large factors. Their study, however, focusses on

the model output uncertainty rather than on quantification of

spatial sources of uncertainty or spatial sensitivity.

Another study is presented by Stisen et al. (2011), who

investigated whether the use of spatially distributed surface

temperature data in an objective function can provide robust

calibration and evaluation of the MIKE SHE model com-

pared to a lumped simulation. The study used a spatial per-

turbation of parameters by random factors between 0.75 and

1.25 in a 2 km grid for the sensitivity analysis, but the results

were not analyzed spatially. Thus no spatial pattern of sensi-

tivity, showing which zones of the model are more vulnerable

to uncertainty, was obtained.

Another spatial approach for sensitivity analysis was pre-

sented by Hostache et al. (2010). In their work a local, gra-

dient method was applied to conduct a sensitivity analysis of

the Manning coefficient in each computational node of a hy-

drodynamic model. This approach showed completely differ-

ent sensitivity zonation than in the predefined land-use-based

Manning coefficient classes used as a comparison scenario.

This result stresses the importance of assessing the sensitiv-

ity in a spatially distributed way.

In this study, the various approaches of spatial sensitiv-

ity (or uncertainty) analysis presented above are compiled

and extended in order to propose a method that would be

generally applicable and thus would give a framework for

inter-comparison of different models. Such a method would

use a regular grid to quantify the spatial pattern of sensitivity

as in Stisen et al. (2011); hence it differs from the irregular

zonation in Younger et al. (2009). Furthermore, the pertur-

bation of spatial input data in a general framework should

be realized using a well-established algorithm, e.g. Latin-

Hypercube One-factor-At-a-Time (LH-OAT) (van Griensven

et al., 2006). This change would give a straightforward inter-

pretation of the sensitivity. Similarly, Hostache et al. (2010)

used a well-established gradient method for spatial sensitiv-

ity analysis. However, unlike the gradient method, LH-OAT

provides global insight into sensitivity. Such a method would

also allow one to quantify the sensitivity of spatial data with

respect to the output and be able to explain the causes for the

sensitivity patterns.

The main purpose of the application of spatial sensitivity

analysis proposed in this study would be, after the Saltelli

(2002) definition of sensitivity analysis, to quantify spatially

the vulnerability of the model output to uncertainty of spatial

input. Thus a result of this analysis would provide feedback,

e.g. in regards to where in a model domain a modeler should

focus more on the quality of input data and parameters. How-

ever, the same method can be used for comprehensive spatial

change (e.g. land-use change) analyses to show where the

change (e.g. urbanization) would be least or most influenc-

ing the model output.

An important issue in this study is the selection of the hy-

drological model used to conduct the spatial sensitivity anal-

ysis. An option is the Water and Energy Transfer between

Soil, Plants and Atmosphere (WetSpa) model (De Smedt

et al., 2000; Liu and De Smedt, 2004) which has shown to

have a high sensitivity with respect to runoff prediction when

various scenarios of distributed impervious surfaces input

data were tested (Chormański et al., 2008; Berezowski et al.,

2012; Verbeiren et al., 2013). Moreover, the WetSpa model

allows parametrization based on distributed snow data from

a remote sensor (Berezowski et al., 2015).

Another issue is the selection of the input data used to con-

duct the spatial sensitivity analysis. A spatial data set that

is frequently tested and easy to obtain is snow cover. Snow

cover fraction (SCF [-]) or snow water equivalent remote

sensing products are widely available from a number of sen-

sors. The different available products vary widely in spatial

resolution (500 m to 25 km), temporal resolution (sub-daily

to monthly) and temporal coverage (the oldest time series

starts in 1966, while new products are regularly announced).

One of the most frequently used remote sensing snow prod-

ucts comes from the MODIS instrument (Hall et al., 2006).

Several studies show different strategies with respect to how

hydrological models can benefit from MODIS snow cover

data. A popular approach is to derive snow depletion curves

from MODIS SCF and use them in the Snowmelt Runoff

Model (SRM) (Martinec, 1975). This approach is still popu-

lar and used in recent studies (Lee et al., 2005; Tekeli et al.,

2005; Li and Williams, 2008; Butt and Bilal, 2011; Tahir

et al., 2011; Bavera et al., 2012). However, the SRM studies

are focussed mostly on the winter half-year and are limited to

study sites where snowmelt processes are dominant. Another

popular model which benefits from satellite-derived SCF is

HBV (Sælthun, 1996), with a number of studies showing use

of MODIS snow products (Udnaes et al., 2007; Parajka and

Blöschl, 2008; Şorman et al., 2009). In the WetSpa model the

MODIS snow products were used to evaluate spatial distri-

bution of predicted snow cover (Zeinivand and De Smedt,

2010) and for analysing its skill for discharge simulation

(Berezowski et al., 2015). The spatial sensitivity of model

output to snow cover, despite its popularity as input data in

distributed hydrological models, has not yet been evaluated.

The aim of this paper is to provide and test a methodology

for a global spatial sensitivity analysis of SCF in a distributed

rainfall-runoff model. The purpose of this analysis is to show

whether the WetSpa model is spatially sensitive to SCF, i.e. to

identify zones where the model output is most vulnerable to

input uncertainty. An important point of the analysis is to ex-

plain the existing patterns of spatial sensitivity in function of

physical and spatial parameters used and hydrological pro-

cesses in the study area. For the remainder of the paper, the
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section “Methods” presents the spatially distributed rainfall-

runoff model WetSpa, the study area, data and spatial sen-

sitivity analysis. In “Results” the output of the spatial sen-

sitivity analysis of SCF for the Biebrza River catchment is

presented and described. The “Discussion” section presents

the results in light of the hydrological processes occurring in

the study area, but further applicability of the spatial sensi-

tivity analysis method and the limitation of the method (e.g.

computation time) are also provided. The final section “Con-

clusions” recaps the main findings of the study.

2 Methods

2.1 Hydrological model

The hydrological simulations in this study were conducted

using the WetSpa model (De Smedt et al., 2000; Liu et al.,

2003). The model divides a catchment into a regular grid

with a specified dimension. In each grid cell, the water bal-

ance is simulated and the surface, interflow and groundwa-

ter discharge components are routed to the catchment outlet

(Wang et al., 1996). Spatial parameters used to calculate the

hydrological processes are obtained from land-use, soil and

elevation input maps. Attribute tables based on literature data

are linked to the maps and transformed to distributed phys-

ical values via a GIS preprocessing step (Chormański and

Michałowski, 2011). Several studies have demonstrated that

WetSpa and its steady-state version WetSpass (Batelaan and

De Smedt, 2007) are suited to integrate distributed remote

sensing input data in the simulation of the hydrological pro-

cesses (Poelmans et al., 2010; Dujardin et al., 2011; Ampe

et al., 2012; Chormański, 2012; Demarchi et al., 2012; Dams

et al., 2013).

The model consists of the following storages: intercep-

tion, depression, root zone, interflow and groundwater. Water

transport between the storages is based on physical and em-

pirical equations. Rainfall, temperature and potential evapo-

transpiration based on data from meteorological stations are

made spatially explicit by use of Thiessen polygons, but a

spatially distributed input form is also possible.

In the standard WetSpa version, snow accumulation is

calculated based on precipitation and a threshold temper-

ature t0 (◦C). When the temperature in a grid cell is

t (◦C) and falls below t0, precipitation is assumed to

be snow. Snowmelt is calculated based on t0, a degree-

day coefficient ksnow (mm ◦C−1 day−1) and coefficient krain

(mm mm−1 ◦C−1 day−1), reflecting the amount of snowmelt

caused by rainfall vrain (mm). In this study SCF was obtained

from MODIS snow products and used as input data. Thus,

snow accumulation was not calculated but replaced with the

input SCF, while the snowmelt amount (vsm) (mm) per model

time step δt (day) is calculated as

vsm = SCF(ksnow(t − t0)+ krainvrain(t − t0))δt . (1)

This approach of calculating snowmelt based on SCF and

snowmelt rate was proposed by Liston (1999). It allows us

to obtain distributed vsm values weighted by SCF from grid

cells where SCF> 0. WetSpa is also capable of using an en-

ergy balance model for snowmelt calculation (Zeinivand and

De Smedt, 2010); however, because of the higher demand on

input data, this approach was not used.

Surface water routing is based on a geomorphological in-

stantaneous unit hydrograph (IUH) (Liu et al., 2003). The

IUH is calculated for a flow path starting in a grid cell and

ending at the catchment outlet, i.e. each grid cell has its own

IUH. Groundwater flow and interflow are calculated on a

sub-catchment level based on a linear reservoir method and

routed to the catchment outlet with the IUH. Comparison of

the WetSpa performance with other distributed hydrological

models can be found in the results of the DMIP2 project (Sa-

fari et al., 2012).

The model was set up with a daily time step and 250

by 250 m grid cells. The calibration period was 1 Septem-

ber 2008 to 31 August 2009, while validation was from

1 September 2007 to 31 August 2008. The length of the cal-

ibration and validation was selected to optimize the model

for snow conditions occurring in the period selected for sen-

sitivity analysis (Sect. 2.4.1). The global WetSpa parameters

were calibrated using the Shuffled Complex Evolution algo-

rithm (Duan et al., 1993). The calibration was conducted with

the R software (R Development Core Team, 2013) and pack-

age “hydromad”. The model was optimized to maximize the

Nash and Sutcliffe (1970) efficiency (NSE):

NSE= 1−

τ∑
x=1

(
Qx − Q̂x

)2

τ∑
x=1

(
Qx −Q

)2 , (2)

where Qx and Q̂x are observed and simulated discharges at

time x, Q is the mean observed discharge and τ is the total

number of time steps. Sensitivity of the WetSpa model to the

global parameters is presented in Yang et al. (2012).

2.2 Study area

The study area is the Biebrza River catchment upstream from

the discharge station at Burzyn. The total catchment area

comprises 6845 km2 (Fig. 1). Biebrza is a lowland catchment

consisting of moraine plateaus and post-glacial valleys with

low slopes (average 1.03 %, Fig. 2) and an elevation ranging

from 102 m a.s.l. at the catchment outlet to 298 m a.s.l. at the

northern water divide. Land use is composed of agriculture

(54 %), forests (26 %), wetlands and grasslands (17 %), water

(2 %) and urban (1 %) (Fig. 3). The area is considered semi-

natural, especially because of its large area of well-preserved

wetlands and forests and is therefore used as a reference area

in wetlands research (Wassen et al., 2006). Several lakes in

the northern part of the catchment are controlled by man-

agement schemes, which usually discharge into Biebrza trib-
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Figure 1. Topography of the study area and location of meteorological stations.

Figure 2. Slope map of the study area.

utaries after the accumulation period. Lakes in WetSpa are

modelled by setting appropriate values of the hydraulic pa-

rameters in the model, e.g. by a high runoff coefficient and

low friction. The simulation of water management schemes

in the controlled lakes is, however, not implemented. Dom-

inant soil textures in the study area are sand (34 %), loamy

sand (26 %) and sandy loam (18 %), whereas minor parts are

covered by sandy clay (4 %) and silt (2 %) and other soils

cover less than 1 % of the area. In the river valley, organic

soils are frequent and cover in total 16 % of the study area

(Fig. 4). The dominating landscape features that certainly

have influence on the functioning of the Biebrza hydrolog-

ical system are the river valley and the large forest complex

located in the north-eastern part of the catchment (Fig. 5).

The Biebrza River is characterized by a spring flood

regime; the discharge of the spring flood is mostly related

to the volume of snowmelt in the catchment (Stachý, 1987;

Mioduszewski et al., 2004; Chormański and Batelaan, 2011).

Based on the meteorological record from 25 stations and

the flow record at the Burzyn profile (Fig. 1) managed by

the Polish Institute of Meteorology and Water Management

National Research Institute (IMGW), the study area can be

characterized by the following figures. Mean yearly dis-

charge (1951–2012) at Burzyn is 34.9 m3 s−1, while summer

and winter averages are respectively 26.0 and 43.9 m3 s−1.

Recorded extreme low and high discharges (1951–2012) are

4.33 and 517 m3 s−1 respectively. The climate in this area is

transitional between continental and Atlantic with relatively

cold winters and warm summers, effectively making this area

the coldest region in lowland Poland. The mean air tempera-

ture (1979–2009) is 7.0 ◦C; in the winter half-year it is 0.3 ◦C

and in the summer half-year 13.7 ◦C. The mean monthly

temperature (1979–2009) has a maximum in July (17.6 ◦C)

and minimum in January (−3.3 ◦C). The yearly precipita-

tion (1979–2009) is 587 mm (375 mm in the summer half-

year, 212 mm in the winter half-year). The yearly average

number of days with temperature below 0 ◦C (1979–2009)

is 79 and with snow cover (1975–2012) is 93 (average snow

depth is 12 cm). Based on the meteorological maps (Stachý,

Hydrol. Earth Syst. Sci., 19, 1887–1904, 2015 www.hydrol-earth-syst-sci.net/19/1887/2015/
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Figure 3. Land use in the study area. Land-use classes are the same

as used in the WetSpa model, defined by International Geosphere–

Biosphere Programme classification system.

1987; Rojek, 2000), the mean yearly evaporation from free

water surface (1951–2000) is 550 mm, 465 mm in summer

and 85 mm in winter (1951–1970).

2.3 Data

Hydrometeorological data (precipitation, air temperature and

discharge) were obtained from IMGW. Daily precipitation

was obtained for 25 rain gauge stations, whereas air tem-

perature was available for 5 stations (Fig. 1). Temperature

was recorded as minimum and maximum daily temperature;

an average from these values was calculated to obtain the

mean daily temperature for each station. Daily discharge was

obtained for Burzyn. Potential evapotranspiration was esti-

mated based on mean monthly evaporation from free wa-

ter surface (Stachý, 1987) and uniformly disaggregated into

daily values.

Daily SCF was obtained from MODIS/TERRA snow

product MOD10A1 (Hall et al., 2006, datasets used: IX 2007

to X 2009) with a 500 m resolution. The SCF values in

MOD10A1 are calculated based on the Normalized Differ-

ence Snow Index (NDSI):

NDSI=
rvis− rir

rvis+ rir
, (3)

Figure 4. Soil texture map of the study area. Soil textures are the

same as used in the WetSpa model, defined by the US Department

of Agriculture.

where rvis and rir are the reflectance visible and in near-

infrared bands, which for the MODIS sensor are respec-

tively bands 4 (545–565 nm) and 6 (1628–1652 nm). In gen-

eral, NDSI gives higher values when a larger part of a pixel

is covered by snow. However, it may be affected by noise

from many sources and has to be corrected for bias in for-

est areas (Klein et al., 1998). The MOD10A1 SCF input

data were aggregated into 524 4 km by 4 km snow zones,

while zones close to the catchment boundary are fractions

of a 4 km square. The purpose of the aggregation was to

decrease computation time of the sensitivity analysis and

reduce noise in the MOD10A1 data while keeping enough

variability to obtain meaningful spatial results. In order to

remove missing data related to cloud cover occurrence the

SCF in snow zones was linearly interpolated over time. Fi-

nally, SCF was set to 0 in months when there was no snow

recorded in lowland Poland, i.e. from May to September. The

aggregated MOD10A1 SCF data in snow zones were used to

calibrate the WetSpa model. For the spatial sensitivity anal-

ysis, however, the daily time series of catchment averages of

MOD10A1 SCFs were used; i.e. the spatial pattern of SCF in

snow zones was obtained by perturbing the catchment aver-

ages by random factors (Sect. 2.4.1).

Spatial data (elevation, land use and soil) used to calcu-

late distributed model parameters were obtained from vari-
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able GIS sources. The elevation map (Fig. 1) was compiled

from three sources: the digital elevation model of Poland on a

scale of 1:26,000, digitized contours from the topographical

map of Poland on a scale of 1 : 25 000 and from field sur-

veys in the Biebrza valley (Maciorowski et al., 2014). The

land-use map (Fig. 3) was obtained from the Corine Land

Cover 2006 project (Commission of the European Commu-

nities, 2013). In the catchment area outside the Polish border

(56 km2), agricultural land-use was assigned. The soil map

(Fig. 4) was obtained from the soil map of Poland with a

scale of 1 : 50 000 for agricultural areas and 1 : 500 000 in

forests and cities. Outside the Polish border the most fre-

quent in the neighbourhood, sandy soil, was assigned. All

the spatial data were interpolated to 250 m grid cells using

the nearest-neighbourhood (soil, land use) and the bilinear

(elevation) algorithms.

2.4 Sensitivity analysis

2.4.1 Spatial sensitivity analysis with Latin-Hypercube

One-factor-At-a-Time algorithm

Usually a sensitivity analysis is performed for global param-

eters of a model (i.e. a set of parameters valid for the whole

model area). The sensitivity analysis presented in this paper,

however, follows a spatial approach, i.e. parameters (e) are

evaluated in different zones of the model area. In this case

study the parameter ei represents a fraction of the daily av-

eraged MOD10A1 SCF assigned into the zone i. Since ei
is randomly sampled the MOD10A1 data constrain only the

temporal dynamics of SCF. Hence, results of the sensitivity

analysis are interpretable in terms of SCF as input data in

general rather than in terms of MOD10A1 in particular.

LH-OAT (van Griensven et al., 2006) is an effective global

sensitivity analysis method, similar to the Morris screening

(Morris, 1991). The LH-OAT method is frequently used by

SWAT users for ranking the parameters according to their in-

fluence on the model output (Nossent and Bauwens, 2012).

LH-OAT combines two different techniques. First, it selects

n latin-hypercube (McKay et al., 1979) samples. Next, the

LH points are used as starting points of p one-factor-at-a-

time perturbations, where p is equal to the number of model

parameters. A higher number of LH samples (n) will lead to

a better convergence; a value of at least n= 100 is necessary

to achieve convergence (Nossent, 2012; Nossent et al., 2013).

The method requires in total p(n+ 1) model evaluations to

calculate the sensitivity analysis results. The sensitivity mea-

sure (final effect) for each ith parameter is calculated by av-

eraging partial effects for this parameter (si,j ) from all LH

samples (van Griensven et al., 2006):

si,j =

∣∣∣∣∣∣∣
100

(
F(e1,...,ei (1+fi ),...,ep)−F(e1,...,ei ,...,ep)

[F(e1,...,ei (1+fi ),...,ep)+F(e1,...,ei ,...,ep)]/2

)
fi

∣∣∣∣∣∣∣ , (4)

Figure 5. Major landscape features of the Biebrza River catchment.

The Biebrza River valley runs NE–SW through the catchment with

at the upstream part of the valley a large forest complex. Catchment

area outside the river valley is upland/plateau with mineral soils.

si =

n∑
j=1

sij

n
, (5)

where F (.) is a response or objective function of a model

run with a set of e1 to ep parameters, ei is the current param-

eter and j is the current LH sample ranging between 1 and n;

fi is the fraction by which ei was changed during the OAT

perturbation, the sign of which is random at each loop as the

value can increase or decrease. Since the small snow zones

at the catchment border would give relatively smaller sensi-

tivity than similarly parametrized zones of bigger area, the

si measure has to be normalized for non-equal area (ai) of

snow zones. Thus, the normalized sensitivity (
?
si ) is defined

as

?
si =

si

ai
. (6)

?
si should be interpreted as a response measure of the changes

in SCF in the snow zones to the value of F (.); a higher sensi-

tivity stands for a stronger response and means that the model

output is more vulnerable to uncertainty in a particular snow

zone. This study design allows to obtain SCF sensitivity in

each snow zone of the model. Insights into model sensitiv-

ity while simulating different processes can be achieved by

using various response functions as F (.) (Sect. 2.4.2). The
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Figure 6. Graph illustrating the spatial LH-OAT SCF sampling for calculating the sensitivity analysis. The top row presents a spatially

averaged observed SCF for an example catchment (top left panel) and the example catchment with highlighted snow zones i and i+ 1 (top

right panel). The next rows present SCF in the zones i (panels in the left column) and i+ 1 (panels in the central column) in the advancing

LH-OAT loops starting from the loop [i− 1,j ] and the discharge simulated during these loops (panels in the right column). Symbols are the

same as in Eq. (4): ei and ei+1 represent a fraction of the SCF in the snow zones i and i+1, f is the fraction by which e was changed during

the OAT perturbation, j and j + 1 represent the subsequent LH samples, q is the discharge simulated at the catchment outlet.

example of LH-OAT loops for spatial sensitivity analysis de-

scribed above is presented in Fig. 6.

The experimental set-up for the spatial sensitivity was as

follows. The values of the global parameters of the WetSpa

model were the same as those obtained from the model

calibration. To be able to achieve convergence, a relatively

large number of LH samples was selected (n= 100). To-

gether with the sample of ei parameters representing 524

4 km× 4 km snow zones (p = 524), this results in a total

number of model evaluations of 52500. The LH samples are

taken from a uniform distribution ranging from 0 to 1.14,

resulting in a range of 0 to 1 for the SCF in a snow zone

(maximum daily mean SCF in the catchment was 88 %; thus
1

0.88
= 1.14). The perturbation fi was set to 1 % in order to

avoid the OAT samples exceeding the average distance be-

tween the LH samples. The sensitivity analysis was run for

2 full hydrological years from 1 November 2007 to 31 Octo-

ber 2009, preceded by a warm-up period of 2 months.

2.4.2 Response functions

In order to investigate the relationship between parameters

and different model processes, the sensitivity analysis was

performed for a set of response functions F (.). A response

function quantifies a model behaviour but, unlike an objec-

tive function, a response function does not use observation

(e.g. observed discharge). Table 1 lists the 15 response func-

tions which were used in the sensitivity analysis. This selec-

tion of response functions allows us to interpret the results in

light of different components of the discharge as simulated

by a number of model processes related to them. Moreover,
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Table 1. Descriptions and abbreviations of the 15 response functions (RF) which were used in the sensitivity analysis.

Description RF abbreviation

Yearly Winter Summer

Mean simulated discharge q qw qs

Mean simulated discharge from surface runoff qs qsw qss

Mean simulated discharge from interflow qi qiw qis
Mean simulated discharge from groundwater qg qgw qgs

Mean of the highest 10 % simulated discharges qhigh – -

Mean of the lowest 10% simulated discharges qlow – –

Mean simulated snowmelt vsm – –

the division into winter and summer half-years gives more

insight into the seasonal variability of the simulated results.

The winter half-year response functions reflect processes

occurring during snow accumulation and spring snowmelt

when the highest flows occur. However, the summer half-

year response functions reflect processes occurring during

the summer low flow period. Winter half-year response func-

tion were calculated for November until April, summer half-

year response function for May until October. The qhigh and

q low reflect processes related to the highest and lowest flows.

The vsm is calculated as the mean daily value of snowmelt

(mm) and reflects processes related to snowmelt generation

without routing.

2.4.3 Output data analysis

The spatial approach followed in this study gives a large out-

put data set, i.e. sensitivity maps based on different response

functions. Each sensitivity map was analyzed in light of 15

WetSpa parameter maps presented in Table 2. The Thiessen

polygons for potential evapotranspiration were omitted, as

there was only one polygon for the whole catchment.

In order to prepare the data set for statistical analysis, each

of the 15 parameter maps was spatially aggregated to fit the

spatial extent of the sensitivity analysis results (
?
si) of the

snow zones by calculating the mean (for continuous data) or

the majority (for discrete data) of a parameter value in a snow

zone. Based on this data set the coefficient of determination

(ρ2) was calculated for each pair of
?
si and the aggregated

parameter values. The ρ2 describes the strength of the linear

association between the variables by indicating the fraction

of one variable’s variance explained by the second variable.

Since in literature the thresholds of ρ2 for quantifying the

strength of the linear association are vague, in this paper a

ρ2>0.40 is used to represent a moderate association.

3 Results

3.1 Model calibration and performance

The calibrated model shows high efficiencies: NSE= 0.86

for the calibration period, NSE= 0.73 for the validation

period and NSE= 0.79 for the whole period. The snow-

related global WetSpa parameters were estimated dur-

ing the calibration as: ksnow = 5.03 mm ◦C−1 day−1, krain =

0.02 mm mm−1 ◦C−1 day−1. The comparison of observed

and simulated discharge is presented in Fig. 7. Of the simu-

lated discharge at the catchment outlet, 90 % has a groundwa-

ter origin, while surface runoff (5.3 %) and interflow (4.7 %)

contribute mostly to the highest peaks (Fig. 7).

3.2 Spatial sensitivity analysis

The maps presenting global model output sensitivities
?
si to

variations of spatial SCF are presented in Fig. 8. The use

of different response function results in different patterns of

spatial sensitivity, although some similarities can be distin-

guished as well. The minimum, maximum and mean values

are indicated on each map (Fig. 8). When the minimum is

equal to 0, the model is completely insensitive in at least one

snow zone for this response function. The values presented

in the first four rows can be compared within a row; however,

comparison between the rows is more difficult as in different

rows the response functions concern discharge components

of different magnitude. Note that the grey scale is different

for all maps in the lowest row. This is because, unlike in the

upper rows, the
?
si calculated from these response functions

are not intended to be compared within this row as they con-

cern different processes.

The analysis of ρ2 values (Table 3) explains the spatial re-

lations between SCF sensitivity with different response func-

tion and the spatial parameters. Most of the pairs in Table 3

have low ρ2, suggesting that a parameter was not relevant for

sensitivity with this response function. However, for most of

the response functions at least one ρ2>0.40 was found, in-

dicating that the SCF sensitivity with these response func-

tions can be partially explained by the values of the parame-

ter maps. The values of ρ2 show influential and unimportant

spatial parameters for the SCF sensitivity, i.e. for the snow-

related processes. Detailed analysis of Fig. 8 and Table 3 is

provided in the subsequent subsections.
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Table 2. WetSpa parameter maps used to analyze the sensitivity analysis results: the generic input maps used to derive the parameters maps

are marked with+when used and – when not used.

Parameter Abbreviation Generic input map

Soil Land use Elevation

Slope slp – – +

Hydraulic conductivity h_con + – –

Soil field capacity f _cap + – –

Maximal interception i_max – + –

Minimal interception i_min – + –

Pore size distribution index p_ind + – –

Soil porosity por + – –

Residual soil moisture content res + – –

Root depth r_d – + –

Wilting point w_p + – –

Runoff coefficient r_c + + +

Depression storage dep + + +

Initial soil moisture content i_sm + – +

Mean temperature in Thiessen polygons T from the stations

Precipitation sum in Thiessen polygons P from the stations
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Figure 7. Observed and simulated daily discharge from the calibrated WetSpa for the period in which the sensitivity analysis was conducted

(upper panel). Also presented is WetSpa simulated groundwater and interflow discharge as well as only groundwater discharge. Catchment

average daily temperature and SCF in the same period is presented in the lower panel. The ticks on the time axis indicate the 1st day of a

month.

3.2.1 General relations of the spatial sensitivity

analysis results with parameters maps

The last column of Table 3 shows the frequency of the pa-

rameters with moderately strong coefficient of determination

under different response functions. The most frequently oc-

curring parameter with a coefficient of determination above

the threshold (0.40) is slope. The second-most frequent is

the group of soil-texture-related parameters: wilting point,

hydraulic conductivity, porosity, residual soil moisture and

field capacity. The lowest frequency is observed for maximal

and minimal interception, initial soil moisture, root depth as

well as parameters responsible for generating surface runoff

– runoff coefficient and depression storage.

The scatter plots of the slope versus different response

functions (Fig. 9) show that this parameter strongly corre-

lates with the spatial sensitivity quantified with q, qi and

qg and their winter/summer half-years equivalents. However,

when looking closer at the plots for these response functions,

the lower values of the slope (0.0–0.5 %) give steeper rela-

tions with less scatter than higher slope values.
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Figure 8. The SCF sensitivity maps showing
?
si in snow zones of the WetSpa model for Biebrza River catchment for different response

functions. The grey scale represents linearly stretched
?
si values between minimum (black) and maximum (white); for the top four rows the

grey scale is selected to match the data range of all maps in each row; in the lowest row each map has individual grey scale between the

minimum and maximum values indicated on the plots (see Sect. 3.2 for details). Explanation of the response functions is presented in Table 1.
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Table 3. ρ2 values calculated for the WetSpa distributed parameters (rows) and the SCF sensitivity maps under different response functions

(columns). ρ2>0.40 are bold; the frequency that this condition is true is summarized (
∑

) in the last row and column. Explanation of the

response functions and parameters is presented in Tables 1 and 2.

q qw qs qs qsw qss qi qiw qis qg qgw qgs qhigh qlow vsm
∑

slp 0.58 0.58 0.48 0.00 0.00 0.02 0.45 0.44 0.23 0.56 0.56 0.45 0.36 0.12 0.09 8

h_con 0.00 0.00 0.00 0.40 0.40 0.28 0.16 0.15 0.11 0.00 0.00 0.00 0.01 0.00 0.00 2

f _cap 0.25 0.20 0.41 0.15 0.15 0.02 0.24 0.24 0.14 0.27 0.23 0.40 0.15 0.18 0.12 2

i_max 0.00 0.01 0.00 0.03 0.03 0.03 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.01 0

i_min 0.09 0.07 0.16 0.03 0.03 0.01 0.03 0.04 0.02 0.10 0.08 0.16 0.05 0.02 0.01 0

p_ind 0.09 0.07 0.20 0.21 0.20 0.42 0.00 0.00 0.01 0.08 0.06 0.18 0.06 0.18 0.20 1

por 0.25 0.20 0.44 0.03 0.04 0.00 0.16 0.16 0.10 0.26 0.22 0.42 0.15 0.22 0.17 2

res 0.25 0.20 0.42 0.10 0.11 0.01 0.20 0.20 0.12 0.27 0.23 0.41 0.15 0.19 0.13 2

r_d 0.00 0.01 0.00 0.12 0.12 0.08 0.00 0.00 0.04 0.00 0.00 0.01 0.00 0.00 0.01 0

w_p 0.25 0.21 0.42 0.14 0.14 0.02 0.23 0.23 0.13 0.27 0.23 0.41 0.15 0.18 0.12 2

r_c 0.03 0.02 0.11 0.30 0.30 0.12 0.11 0.10 0.04 0.05 0.03 0.12 0.02 0.08 0.06 0

dep 0.26 0.26 0.24 0.11 0.11 0.15 0.05 0.05 0.06 0.24 0.24 0.22 0.14 0.06 0.03 0

i_sm 0.07 0.06 0.10 0.00 0.00 0.00 0.07 0.07 0.00 0.07 0.06 0.10 0.05 0.04 0.00 0

T 0.05 0.05 0.02 0.03 0.03 0.16 0.08 0.09 0.00 0.04 0.05 0.02 0.01 0.00 0.42 1

P 0.02 0.03 0.00 0.00 0.00 0.02 0.01 0.01 0.06 0.02 0.03 0.00 0.04 0.08 0.19 0∑
1 1 5 1 1 1 1 1 0 1 1 5 0 0 1

3.2.2 Discharge source response functions

Using q and qw as response functions resulted in a clear pat-

tern differentiating the upland from the valley (cf. Figs. 8 and

5), showing that SCF zones occurring in the flat, organic-

soil-dominated valley is much less sensitive than in the min-

eral upland. High sensitivity is obtained in snow zones with

steeper slopes (cf. Figs. 8 and 2), which is confirmed by

high ρ2 (Table 3). Several WetSpa parameters (mostly soil-

texture-dependent: depression storage, wilting point, field ca-

pacity, porosity, residual soil moisture content) have high ρ2

with q and qw response functions (Table 3).

Some differences between q and qs are visible when

analysing ρ2 (Table 3). The SCF sensitivity for qs has higher

ρ2 for parameters that are related to groundwater flow, like

porosity, residual soil moisture content, field capacity and

pore size distribution index.

When comparing q, qw and qs to qg, qgw and qgs with

respect to spatial patterns (Fig. 8) and ρ2 (Table 3), the fig-

ures are very similar. The group of parameters responsible

for groundwater processes (porosity, residual soil moisture

content, field capacity and pore size distribution index) have

higher ρ2 with the groundwater response functions qg and

qgw than with q and qw.

The SCF sensitivity for qs and qsw differentiates the river

valley and the north-western upland catchment from the

south-eastern upland (cf. Figs. 8 and 5). The maps of SCF

sensitivity for qs and qsw are the only ones that show clearly

a relatively higher sensitivity in the river valley than in most

of the upland.

The SCF sensitivity for the interflow response function

differs from the groundwater and surface water response

function results. The spatial pattern of SCF sensitivity for qi

and qiw seems opposite to the pattern of qs and qsw.

3.2.3 Extreme discharges response functions

The SCF sensitivity for qhigh and q low presents a spatial pat-

tern that can not be visually related to land-use, soil or slope

maps (Fig. 8). These response functions do not correlate with

any of the WetSpa spatial parameters (Table 3). The spatial

pattern of qhigh shows high values both in the upland and in

the valley; however it also has some zones of low sensitivity

in the central part of valley. Low but noticeable ρ2 is found

only with the slope. The spatial pattern of q low is quite uni-

form, with some higher values in the western uplands and

lower values in the central part of the valley and in flat re-

gions in the northern upland (cf. Figs. 5 and 8).

3.2.4 Mean snowmelt response function

The pattern of vsm shows random values with different means

in different Thiessen polygons for temperature stations used

in the model (Fig. 8). This pattern is confirmed by high ρ2

between vsm and temperature, with no other parameters hav-

ing noticeable ρ2 (Table 3).

4 Discussion

4.1 Model calibration and performance

The groundwater-dominated discharge composition obtained

with the calibrated model is in conceptual agreement with

Pajnowska et al. (1984). The model performed well during

snowmelt-supplied spring floods. However, the peaks were
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Figure 9. Relation between the slope and spatial sensitivity analysis results (
?
si ) quantified with different response functions. Explanation of

the response functions is presented in Table 1.

underestimated by 8 % of the observed value on average.

The underestimations of peak discharges are possibly de-

termined by the uncertainty of the rating curve. During the

yearly spring floods, the measurement profile near the gaug-

ing station widens outside the riverbed and extends into the

densely vegetated floodplain, where proper hydraulic mea-

surements are very difficult. Nonetheless, the shape of the

events resembled well the observed values, which can be an

advantage of using observed SCF data instead of predicting

snow cover in the model. This is supported by the compari-

son of the hydrograph (upper part of Fig. 7) with the timing

of snowmelt and temperature rise above 0 ◦C (lower part of

Fig. 7), which shows a rapid discharge rise at the beginning

of spring floods. Good results of using MODIS snow prod-
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ucts in other hydrological models have also been shown by

Lee et al. (2005), Udnaes et al. (2007), Parajka and Blöschl

(2008), Şorman et al. (2009), Tahir et al. (2011) and Bere-

zowski et al. (2015). The model performed worse during pe-

riods of intensive summer storms. For these storms, a rapid

discharge rise was simulated, which was not observed in re-

ality. A possible reason for this low performance is the pos-

itively biased soil moisture prediction of the model during

these periods.

4.2 Spatial sensitivity analysis

The global model output sensitivities (
?
si) are calculated

for a regular-structured grid (Fig. 8). This approach may

be considered imperfect, as irregular, homogenous zonation

(Younger et al., 2009) could more directly reference the sen-

sitivity to spatial features of the model. Regular zonation

used in this study was similar as in Stisen et al. (2011). This

approach implies that the borders of spatial features do not

resemble the zonation and the results are somewhat aggre-

gated. An advantage of the structured grid lies, however, in

broad comparability of different models; e.g. spatial sensi-

tivity analysis in a study area modelled with different spa-

tial discretization like hydrological response unit (SWAT) or

grid cell (WetSpa) could be easily compared when using the

structured grid. Moreover, an irregular approach would re-

quire much more zones if very fine spatial features were to be

analyzed. This would require additional computational time,

as the number of zones determines the number of parameters

for the sensitivity analysis (see Sect. 4.3 for further discus-

sion on this topic).

Computational time could be decreased if methods other

than LH-OAT were used. Spatial sensitivity calculated based

on a gradient method was presented by Hostache et al.

(2010). Their results, although showing the importance of

spatial sensitivity analysis, were calculated using a local

method. Local methods do not properly handle the non-linear

models (Turanyi and Rabitz, 2000). On the contrary, the

method presented in this study results in a global sensitivity;

i.e. it covers the whole parameter space and thus gives more

insight into the model behaviour than a local method. There

is still room for selecting other method for spatial sensitivity.

Interesting results could be obtained when a variance-based

method, like Sobol’s (Sobol’, 1993) would be used. Such an

analysis would give additional information to LH-OAT on

interactions between the model parameters.

4.2.1 General relations of the spatial sensitivity

analysis results with parameters maps

The reason why most sensitivity maps calculated for differ-

ent response functions (Fig. 8) were correlated with slope

(Table 3) is because slope has a large impact on other hy-

draulic parameters (e.g. Manning coefficient) and also tunes

values of depression storage and potential runoff coefficients

(Liu and De Smedt, 2004).

A number of sensitivity maps were correlated with soil-

texture-related parameters. These parameters have an influ-

ence on directing water that is stored as soil moisture and

thus have general impact on groundwater, interflow and infil-

trability. The soil-texture-related parameters have higher fre-

quencies than the land-use-related parameters (cf. Tables 2

and 3). This means that soil texture is a clearly more impor-

tant WetSpa input than land use with regard to the SCF sen-

sitivity. The reason may be that the groundwater discharge

accounts for 90 % of the total simulated discharge and the

parametrization of the groundwater processes is strongly de-

pendent on soil properties in WetSpa.

Some of the WetSpa parameter maps have a ρ2 not above

the selected threshold for any of the sensitivity maps. In the

case of the interception-related parameters the interception

capacity is important in the summer half-year, when no SCF

is present. A similar explanation holds for the root depth (an

evapotranspiration-related parameter) which has a relatively

negligible importance in the winter half-year. In the case of

initial soil moisture content the explanation could be that it

affects mostly the beginning of the simulation, i.e. the warm-

up period.

Parameters responsible for generating surface runoff also

did not have ρ2 above the selected threshold for any of the

sensitivity maps. This is explained by the fact that the catch-

ment is not urbanized and areas of high runoff coefficient and

low depression storage are not frequent in this area. This sit-

uation is expected to be different for urbanized catchments,

where the surface runoff would participate more in the total

discharge than in this study area (Berezowski et al., 2012).

The frequency analyzed here is obviously dependent on

the value of the ρ2 threshold (in this case 0.40). The threshold

is subjective, however, and allows discriminating between

the high and low ρ2. The selected threshold is justified by

the fact that the ρ2
= 0.40 is equivalent to the Pearson’s cor-

relation coefficient of 0.63, which is generally considered as

representing a strong correlation between variables. Never-

theless, the results should also be viewed in the scope of the

ρ2 values themselves.

The analysis of correlation between slope and sensitivity

maps provided in more details in Fig. 9 shows that even when

ρ2 values are high (Table 3), the spatial sensitivity can be ex-

plained by a given parameter only in a certain range of its

values, while for the remaining values the correlation is not

that strong. This shows the complexity of the presented anal-

ysis. It has to be taken into account that the values presented

in Table 3 show only the general relation with the sensitivity

maps (Fig. 8), while different model behaviour is expected at

different ranges of the analyzed values.
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4.2.2 Spatial sensitivity in scope of the Biebrza River

catchment functioning

All the sensitivity maps calculated for the winter half-year re-

sponse functions resemble the full-year response functions,

both in the ρ2 (Table 3) and in the spatial pattern (Fig. 8).

This means that when looking at SCF sensitivity, the win-

ter processes dominate the whole year. The reason for this

lies in the fact that snowmelt water is routed mostly in win-

ter and spring, while water routing in summer is only af-

fected by remaining snowmelt water in soil moisture and

groundwater reservoirs. A confirmation that SCF appears to

influence summer half-year discharges more by groundwa-

ter than by surface runoff is the sensitivity for qs, which

has strong correlation with parameters related to groundwa-

ter flow. Nonetheless, the groundwater discharge dominates

the total discharge in the model of Biebrza River catchment

when looking at the similar results for the total discharge and

groundwater discharge response functions. This is also con-

firmed in functioning of the Biebrza River catchment as de-

scribed in literature (Pajnowska et al., 1984; Batelaan and

Kuntohadi, 2002; Wassen et al., 2006; Chormański et al.,

2011a).

This surface runoff response functions (qs and qsw) sen-

sitivity pattern may be related to the soil properties. As

presented in Fig. 4, the south-eastern upland is dominated

by loamy sand (h_con= 1.7× 10−5 ms−1), while soils with

lower hydraulic conductivity are observed in the river valley

(dominated by organic soils h_con= 5.6× 10−6 ms−1) and

the north-western upland (big share of sandy loam h_con=

6.9× 10−6 ms−1). The soil-sensitivity pattern is confirmed

by the high ρ2 with the hydraulic conductivity and weak but

noticeable ρ2 with the runoff coefficient. Thus, the infiltra-

tion ability and surface water routing have a considerable ef-

fect in explaining the SCF sensitivity for surface runoff. An-

other important role of surface runoff is revealed by relatively

higher sensitivity of qsw in the river valley than in most of the

upland. This may be related to the fact that snowmelt in the

Biebrza River valley is a considerable water source to spring

floods and is transported as surface runoff (Chormański et al.,

2011b).

The opposite pattern to qs is visible in qi, what may be

explained by the way the interflow is modelled in WetSpa.

Interflow depends not only on the hydraulic conductivity (the

key parameter for explaining sensitivity for qs) but also on

the slope (ρ2
= 0 for qs), which is related to routing water in

the subsoil and thus shows high ρ2 with SCF sensitivity for

qi and qiw (Table 3).

No ρ2>0.40 are found for the SCF sensitivity for qis (Ta-

ble 3). In this case, the role of the parameters is limited. This

is probably because most of the interflow water that could be

related to SCF produced discharge during winter half-year.

The highest ρ2, similar to qi and qiw, is found with the slope,

which can also be easily linked by similarity of spatial pat-

terns with the SCF sensitivity map (cf. Figs. 2 and 8).

Similarly, no ρ2>0.40 are found for the SCF sensitivity

for q low and qhigh (Table 3). Thus there are other sources of

variance in the SCF sensitivity for these response functions

which do not originate directly in the parameter maps. Only

a low but noticeable ρ2 is found between qhigh and the slope,

indicating a link with runoff generation in WetSpa.

The pattern of q low may be related to extreme ground-

water deficits to which mineral soils in the uplands have a

higher contribution than organic saturated soils in the val-

ley (porosity has low but noticeable ρ2). The spatial pat-

tern of soil moisture in the Biebrza River valley presented

by Dabrowska-Zielińska et al. (2009) partially confirms the

spatial sensitivity analysis results presented in this paper.

4.2.3 Mean snowmelt response function

A completely different pattern than for the other response

functions is presented by SCF sensitivity for vsm (Fig. 8).

According to Eq. (1), vsm in a model grid cell (and thus vsm

in the entire catchment) is calculated based on temperature

and precipitation and then adjusted by SCF. As a result, the

sensitivity for vsm corresponds to the spatial pattern of the

mean yearly temperature averaged in the Thiessen polygons,

while the yearly sum of precipitation in the Thiessen poly-

gons is less influential (Table 3). The pattern of SCF is not

visible, because in this sensitivity analysis the SCF values in

Eq. (1) come from the random LH-OAT sampling. The rea-

son that ρ2 between vsm and temperature and precipitation is

lower than 1.00 is because the values are aggregated in time

and space and lose some of the variance important for the

relation.

4.3 Computational constraints

The total computation time, a product of simulation time and

number of required runs, is a limitation of the applicability of

this method and is similar to in all methods requiring a large

number of model runs to achieve the desired output. This was

also the case in this study; as WetSpa required about 1 min

for a single run, the total time for 52 500 simulations was

about 36.5 days. The advantage of any random-sampling-

based sensitivity analysis method (including LH-OAT) is that

it is easily parallelized, i.e. the LH-OAT samples are obtained

before the simulations and the model runs are divided over a

number of processors or computers.

One could, however, consider decreasing the number of

zones (n) in which the input data are perturbed or the num-

ber of LH samples (p) to receive the results faster. The latter

implies that the LH-OAT method may not converge (Nossent

and Bauwens, 2012). Thus, it seems more reasonable to de-

crease the number of zones and be satisfied with results at

lower spatial resolution.
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4.4 Applicability of the spatial sensitivity analysis

The analyses conducted in this case study are both a vali-

dation and an example application of the spatial sensitivity

analysis method. The further potential use of this method

could be twofold: for generic sensitivity analysis and for a

catchment change scenario analysis.

The generic sensitivity analysis would be similar to the

presented approach in this paper. The maps (e.g. Fig. 8)

would show zones of the catchment with high or low sensitiv-

ity. The correlation analysis as in Table 3 would show the pa-

rameters explaining the sensitivity pattern which thus require

more attention during the parametrization. This would re-

quire possibly denser field sampling of the correlated param-

eters additional to the data subjected to sensitivity analysis

or obtaining the data from a source with less uncertainty; as

a result, the prediction uncertainty should be decreased. Ad-

ditionally, the detailed scatter plots of parameters against re-

sponse functions (e.g. Fig. 9) would show which data ranges

of the parameters are the most responsible for the spatial sen-

sitivity pattern. In contrast, the “standard” sensitivity analy-

sis is performed for global parameters which usually are not

spatially distributed or are semi-distributed (i.e. grouped to

few categories with the same values; e.g. Ayvaz, 2013).

The catchment change scenario analysis was not investi-

gated in this paper but is a possible application of the pre-

sented spatial sensitivity analysis method. In such an analy-

sis instead of SCF input time series the LH-OAT sampling

would be done for e.g. different land covers proportions in

the catchment zones. The output of such an analysis would

be sensitivity of the zones to changes in land cover and could

be used as e.g. a decision support for urban development.

5 Conclusions

With increasing spatial data availability for distributed hy-

drological modelling a need appears for a methodology for

sensitivity analysis of the spatial data. Such a methodology

should point to zones of the study area where the sensitiv-

ity of a model spatial input to output is higher or lower and

should relate these patterns to the processes simulated by the

model. In order to answer these needs this paper presents an

application of the LH-OAT sensitivity analysis to the WetSpa

model of the Biebrza River catchment. Unlike a standard

sensitivity analysis of global model parameters, a spatial ap-

proach is presented in this study. The catchment is divided

into regular snow grid cells or zones in which sensitivity of

SCF as input data was evaluated. The aim of this study was to

present an approach for using sensitivity analysis for spatial

input data and to show that the WetSpa model is sensitive to

spatial input data. Moreover, it was intended to show that the

spatial sensitivity results are related to physical parameters

used in the model.

The spatial approach of the LH-OAT sensitivity analysis

results in spatial maps presenting areas of relatively higher

and lower sensitivity. In order to extend the analysis, the sen-

sitivity analysis was repeated with different response func-

tions. Most of the sensitivity analysis results were similar

for the whole year and winter half-year response functions.

Moreover, the sensitivity obtained for the mean discharge

response function was very similar to the sensitivity analy-

sis for the mean groundwater discharge response function.

Hence, the model behaviour related to snow processes is

dominated by winter half-year and groundwater processes,

which is in agreement with the Biebrza River spring flood

regime with a dominant share of groundwater discharge. An-

other important finding was that SCF sensitivity was high in

snow zones in the river valley under the winter half-year sur-

face runoff response function. This is in agreement with the

observation that the snowmelt in the river valley is a consid-

erable surface runoff source to spring floods.

In this case study, the spatial patterns of SCF sensitiv-

ity could, for most of the response functions, easily be in-

terpreted by co-occurrence of different landscape features

like upland and river valley. However, for some of the re-

sponse functions a straightforward interpretation was impos-

sible. A successful approach to interpreting the patterns was

performed by analysing the values of coefficients of determi-

nation between the physical model parameters and the SCF

sensitivity. The spatial pattern of the sensitivity for differ-

ent response functions, obtained from these results, is related

to different spatial parameters and to different physical pro-

cesses simulated by the model. The parameters which had a

strong correlation with the SCF sensitivity for most of the re-

sponse functions were slope and soil-related parameters. The

potential runoff coefficient and depression storage were im-

portant for only a few response functions, because the catch-

ment is not urbanized. Temperature, which directly influ-

ences the snowmelt generation in the WetSpa model, shows

a strong correlation only with the mean snowmelt response

function. It is important to mention that the spatial sensitivity

quantified with several response functions was correlated to

more than one spatial parameter. This shows the importance

of the links between the parameters which were revealed by

this spatially distributed analysis.

In summary, a spatial approach of sensitivity analysis can

be performed with the LH-OAT algorithm, as presented in

the results of this paper, and the SCF is spatially sensitive

in the WetSpa model. The pattern of spatial sensitivity is re-

lated to spatially distributed physical parameters, and the re-

sults are confirmed by a priori scientific understanding of the

Biebrza River catchment functioning. The spatial sensitiv-

ity maps can by used to highlight areas which require better

attention during the parametrization and to show which spa-

tial parameters have influence on the analyzed phenomena:

in this case, the snow-related processes.

In future work, other input time series or input parameters

should be evaluated in a spatial analysis. It would also be in-
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teresting to compare spatial sensitivity of the same input data

with other models, e.g. TOPMODEL or SWAT. Finally, since

spatial SCF is sensitive in WetSpa, other sources of these in-

put data should be tested in the model.
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