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We modeled internal tide generation above a high sinusoidal ridge in a fluid 
with a mid-depth pycnocline and developed an original method to quantify 
internal tide vertical mode amplitude in 2D-vertical simulations. Since lowest 
modes can propagate over considerable distances, while high modes are more 
likely to dissipate locally, estimating the tidal energy distribution among 
vertical modes is necessary to investigate the spatial redistribution of the tidal 
energy. Our numerical approach allows expansion and verification of previous 
analytical studies over a larger range of configurations. The tidal energy 
distribution among vertical modes is shown here to be dependent on the 
topographic resonance criterion and the topographic blocking parameter. 

Internal tides are ubiquitous and play an essential role in the oceans. They are involved 
in the Meridional Overturning Circulation energy balance (Munk and Wunsch1; Egbert and 
Ray2; Wunsch and Ferrari3). The current debate about the relative importance of the 
mechanical and thermodynamical energy sources (Ferrari and Wunsch4) induces a need for an 
evaluation of the energy transfers and of the energy redistribution in the ocean. In an ocean of 
finite and constant depth, the internal waves (IWs) field can be decomposed into a linear 
superposition of vertical normal modes, which are determined through solving a Sturm-
Liouville eigenvalue problem depending only on the tidal frequency ω and on the buoyancy 
frequency profile N(z). The lowest modes can propagate over a considerable distance, 
contributing eventually to a remote mixing, while high modes are more likely to dissipate 
locally, near the generation site. Hence, the energy distribution among the vertical modes 
needs to be determined to investigate precisely the spatial redistribution of the tidal energy. 
The energy distribution among these vertical modes is highly variable in the oceans 
depending on the generation site. Previous analytical studies5–7 have highlighted a strong 
relationship between vertical mode amplitudes and the topography shape of the generation 
site (height, width, slope). These analytical approaches rely on strong assumptions: linear 
approximation (weak wave amplitude limit), infinitesimal topography or subcritical 
topography, “propagative” environment (ω<N(z) limit). In this letter, following the line of 
research of these analytical theories, we estimate the tidal energy distribution among vertical 
modes in direct numerical simulations. The numerical approach allows us to study a wider 
range of configurations in particular stratification profiles with non-propagative layers and 
high and steep topographies. Numerical simulations of primary generation of IWs (“primary” 
as defined by Dossmann et al.8, in opposition to secondary or local generation) are analyzed 
to describe the tidal energy redistribution among vertical modes inside the pycnocline layer 
near high and abrupt oceanic ridges. 

Two-dimensional (2D) direct numerical simulations in a vertical plane are performed 
using the free-surface nonhydrostatic and non-Boussinesq version of the regional oceanic 
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circulation model SNH described in Auclair et al.9,10. This version uses an original three-
mode time-splitting technique between barotropic (∆te), baroclinic (∆ti) and non-Boussinesq 
(∆tNBQ) motions to deal with non-hydrostatic flows and acoustic waves which are explicitly 
simulated. Previously, similar simulations of internal tide generation performed with the 
nonhydrostatic version of SNH have been compared and validated by laboratory 
experiments8,11,12. A schematic of the numerical configuration, incorporating a plot of the 
initial stratification profile, is presented in figure 1. Table 1 summarizes the parameters of this 
configuration. We applied periodic horizontal boundary conditions, free surface boundary and 
no-slip condition at the bottom of the domain. Molecular values of the kinematic viscosity (ν 
= 10-6 m2/s) and of the density diffusivity (Kρ= 10-7 m2/s) are used, without any turbulence 
closure scheme. Numerical dissipation is provided by the upstream advection scheme. The 
level of dissipation of the upstream scheme has been reduced by a multiplicative coefficient 
of 0.01: upstream advection scheme = centered scheme + 0.01 ∙	diffusive scheme. 

 
FIG. 1. Left: initial stratification profile (solid line). The dotted line indicates the IW forcing 
frequency.  Right: Numerical configuration sketch. Density contours: 6 isopycnal lines at t =0. The 
density difference between two isopycnals is dρ = 10 kg/m 3. Indicated physical parameters are 
defined in Table 1. 

The topography is represented by a high sinusoidal ridge whose shape is given by: 
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where h0 and  ݈ are the height and the half-width of the ridge. At t=0, the ridge is centered at 0 
m. Various shapes of the ridge (λr, h0) are explored (table 1) to study the impact of the 
topography shape on the multimodal structure of the IWs field. Tidal forcing is performed 
through the oscillation of the ridge13. The following ridge displacement is given by ݔሺݐሻ ൌ

ܣ ቂcos ቀ
ଶగ

்
ݐ െ ቁߨ െ 1ቃ, where xm(t) is the horizontal position of the center of the ridge, (A, T) 

are the forcing amplitude and period. Gerkema and Zimmerman14 have shown that a tidal 
motion over a ridge is equivalent to an oscillating topography if the nonlinearity parameter  

ߝ ൌ
బ
ఒೝு

  and the topography parameter ߝ ൌ
బ


  are small, with H the fluid depth. The 

nonlinearity parameter is linked to the conversion efficiency from horizontal to vertical 
displacement by the ridge. In our configurations, the nonlinearity parameter is small (ε <0.01) 
whereas the topography parameter is only smaller than one (εb ≤ 0.35), hence some 
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divergences may appear between the present case and the real tidal forcing case. The Brunt-
Väisälä frequency profile, N(z), (figure 1-left) is inspired by oceanic observations and is the 
same as the one used in Grisouard et al.15: 

ܰଶሺݖሻ ൌ
2
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݃
ߩ∆
ߩߜ

ݔ݁ ቈെ൬
ݖ  ݄
2/ߩߜ
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  (2) 

with g the acceleration of gravity.  
The forcing frequency ω is chosen such that	ሼܾܰ,ܰ݉ሽ ൏ ߱ ൏ ܰ with ܰ ൌ ܰሺݖ ൌ 0ሻ and 
ܰ ൌ ܰሺݖ ൌ െ݄ሻ (figure 1). Hence, the pycnocline NP layer is a waveguide supporting 
propagating internal waves, with evanescent decay taking place in the bottom Nb and in the 
mixing Nm layer. This particular stratification profile with non-propagative bottom and 
surface layers deviates from one of the basic assumptions of analytical theories. 

 Designation Name Value 

F
lu

id
 

Kinematic viscosity  ν (m2/s) 2ൈ10-6 

Density diffusivity Kρ (m
2/s) 10-7 

Coriolis force f (rad/s) 0 
Total depth  H (m) 0.2 
Domain length L (m) 20 

S
tr

at
if

ic
at

io
n 

Pycnocline depth   hρ (m)   0.07 

Pycnocline thickness δρ (m) 0.06 
Density jump ∆ρ (kg/m3) 60 
Upper and Bottom layer 
density 

ଵ,ଶ (kg/m3) ቄ1040ߩ
1100

 

Bottom layer stratification ܰ  (s-1) 0.001 

Upper and bottom layer depth ݄ଵ,ଶ ൌ ቐ
݄ఘ െ

ఋఘ

ଶ

ܪ െ ݄ఘ െ
ఋఘ

ଶ

  (m) ቄ0.04
0.1

 

F
or

ci
n

g 

Ridge height  h0 (m) [0.03,0.07] 
Ridge width ߣ(m) [0.2,1.9] 
Topographic blocking Degree B = h0/h2 [0.3,0.7] 

Forcing amplitude  A (m) 0.006 

Forcing period T (s) 16 

IW
 

Nonlinearity parameter ߝ ൌ
݄ܣ
ܪߣ

 [0.0011,0.01] < 0.018

N
um

er
ic

al
 Spatial resolution ∆ (mm) ≈ 2 

Sigma level number Nσ 100 
Internal time step and ratio 
with external and non-
Boussinesq time step 

∆ti (s) ∆ti /∆te ∆tNBQ/∆te 2.10-3 100 4 

TABLE 1 –Numerical and physical parameters of the configuration 

We developed an original method to quantify the vertical mode amplitude in the 
numerical simulations. The classical Sturm-Liouville eigenvalue problem of vertical mode 
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decomposition is numerically resolved for the initial buoyancy profile N(z) above the flat 
bottom (outside the generation site) for a non-rotating case with the same approach as 
Gerkema and Zimmerman7: 

߲ଶ ܹሺݖሻ
ଶݖ߲

 ݇௫,
ଶ ቆ
ܰଶሺݖሻ െ ߱ଶ

߱ଶ ቇ ܹሺݖሻ ൌ 0  (3) 

where Wn, kn, are respectively the vertical modal structure and the wavenumber; ߱ is the wave 
frequency and ݊	 ∈ ܰ∗ is the mode number. The velocity of a vertical mode n is then defined 

as	ܿ ൌ
ଶగ

்
. Our study is limited to the first four modes (n = 1…4). We used these analytical 

vertical mode structures Wn(z), as a base projection for the simulations. Such modal 
computation is based on linear approximation. Thus, to optimize the agreement between this 
theoretical approach and modal vertical structure in the simulations, we first study the linear 
regime of internal tides. Dossmann et al.8 show that non linear effects and internal solitary 
wave formations appear in a clear way for a nonlinearity parameter, ε, of at least ε0 = 0.018. 
Hence, in these simulations, all the regimes are supposed to be linear: ε < ε0 (table 1). The 
numerical vertical velocity field w(x,z,t) of the pycnocline layer z	∈ ሾݖଵ ൌ െ݄ଵ, ଶݖ	 ൌ െ݄ଶሿ is 
then projected on each analytical vertical modal structure	 ܹሺݖሻ. A fixed time-space window 
has been defined above the flat bottom and close to the generation site to minimize dissipation 
effects on vertical mode amplitude: x	∈ ሾݔଵ ൌ 0.97	݉  ݈  ,	ܣ ଶݔ ൌ 1.55	݉ሿ). This space 
window is referred as the “near field” area on Figure 1. The time window contains two tidal 
periods and starts when the transitory period of mode 4 is over inside the near field area: 
t	∈ ቂݐଵ ൌ ݏ80 

௫మ
ర
, ଶݐ ൌ 2ܶ  ଵݐ ൌ ) ቃ. For each resulting projectionݏ	112 ܲ,௪ሺݔ,  ሻሻ, weݐ

calculate the residual signal (ݓሺݔ, ,ݖ ሻݐ െ ∑ ܲ,௪ሺݔ, ሻݐ ∙ ܹሺݖሻ
ିଵ
ୀଵ ) before applying the next 

vertical mode projection: 

ܲ,௪ሺݔ, ሻݐ ൌ ,ݔሺݓ〉 ,ݖ ሻݐ െ ܲ,௪ሺݔ, ሻݐ ∙ ܹሺݖሻ,

ିଵ

ୀଵ

ܹሺݖሻ〉  (4) 

 where 〈 , 〉 indicates a scalar product. Frequency spectra were calculated on ܲ,௪ሺݔ,  ሻ byݐ
a fast Fourier transform at each point in space. In our configurations, there is only one tidal 
frequency but tidal harmonics can be generated. Moreover, non-linearity can induce the 
emerging of additional characteristic frequencies on the frequency spectra (Mercier et al.16, 
Dossmann et al.17). The amplitude of the spectrum at the fundamental frequency (f0= 1/T = 
0.0625 s-1) 	is considered as the amplitude of the vertical mode: ܣ,௪ሺݔሻ ൌ 	 ܲ,௪ሺݔ, ݂	ሻ. 
Figure 2 represents the spatial average of vertical mode amplitudes over the “near field” area 
(shaded area on Figure 1) for 12 simulations representing a wide range of topography 
widths:	ߣ ∈ ሾ0.2 െ 2ሿ m. This figure illustrates the influence of the topography width on tidal 
energy distribution among vertical modes.  

Influence of the topography width ߣ ∶ a resonance phenomenon 
As highlighted in previous analytical studies of IW generation above small or 

infinitesimal bottom topography5,7, there is, in our specific configuration, a resonance 
phenomenon between the vertical mode wavelength and the topography width. Indeed the 
relation between vertical mode amplitude and topography width is not linear: vertical mode 
amplitude presents a maximum for a narrow range of topography width. The amplitude of 
each mode n is maximal when the topography width ߣ		is of the same order as its 

wavelength	ߣ:  
ఒ
ఒೝ
ൎ 1 (area indicated by colored patch, clearly visible for mode 2 and 3). As 

a consequence, high mode amplitude increases with narrower and steeper topography and 
vanishes for wide topographies. This resonance phenomenon can be related to an energy 
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exchange with the tidal current. Vlasenko and Stashchuk18 highlight a mechanism of 
suppression or amplification of internal waves by a current over an inclined bottom. They 
showed, in particular, that internal waves gain energy when they propagate downslope–
downstream and lose energy when they propagate downslope–upstream. Hence, the amplitude 
of a vertical mode n must be maximal when it propagates, away from the ridge, downslope-
downstream (amplification), and is no longer above the varying topography area (out of the 
generation site) when the tidal current reverses (in this way , the mode n does not propagate 
downslope-upstream and so there is no suppression). When the distance dn, travelled in T/2 
time interval, is superior to the half-width of the topographic obstacle, mode n amplitude is 
amplified by energy exchange with tidal current: dn(T/2)=	ܿ ܶ 2⁄ ߣ ≤  2⁄  <=> λn ≥ ߣ. 
Moreover, when the resonance criterion is met (ߣ ൌ  ), the time interval during whichߣ
mode n propagates downslope-upstream is maximal and thus the amplification effect by tidal 
current is maximal.  

 
FIG. 2. Spatial average of vertical mode amplitudes over the “near field” area versus the width λr of 
the ridge for a fixed ridge height (h0=0.07m). Each colored line represents one vertical mode (n=1..4). 
The confidence intervals are defined using twice the standard deviation of the vertical mode amplitude 
inside the “near field” area. Each colored patch represents an analytical estimate of the associated 
vertical mode wavelength, 	ߣ above the ridge. The maximal value is estimated by resolving the 
classical Sturm-Liouville eigenvalue problem of vertical mode decomposition above the flat bottom 
i.e. from the complete stratification profile: N(z=[-H,0]). The minimal value is estimated from the 
stratification profile at the ridge top: N(z=[-h0,0]).		ߣ refers to an average value between these two 
extremes in order to take account of the ridge height effect. 

Tidal energy distribution among vertical modes at fixed topography width 
Previous analytical studies5,7 show that for a constant topography width and above small 

or infinitesimal sinusoidal topography, vertical mode amplitude an decreases with the mode 
number n. In fact, according to the data of many field observations, in the ocean, the first 
mode usually dominates. However, in our configurations, above narrow and abrupt 
topography (small	ߣ), lowest modes are not always dominant in the near field area. For 

example, Mode 2 is the dominant structure in the near field when		ࣅ
࢘ࣅ
 1 (figure 2). 

Moreover, if we estimate the local amplitude of mode 3 at the base of the ridge (x	∈
ሾ݈  ,ܣ ଷ,௪ܣ ,ଵሿ), it is also larger than mode 1 amplitudeݔ    ଵ,௪, whenܣ

ࣅ
࢘ࣅ
 1 (not shown). 

Mode 3 is suspected to be the dominant structure for narrower topography. However, when 
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the topography width is inferior to 0.1167, nonlinearities and secondary peaks appear on the 
frequency spectrum (ε ≥ ε0). Then the base projection (the modal vertical structures) may not 
be appropriate anymore.  

To summarize, in our particular configuration of high topography with non-uniform 
stratification, mode amplitude, an, for fixed values of topography width λr, does not decrease 
necessarily with n. Indeed, for narrow topography, mode 1 is no longer the most energetic 
one. Similarly, Falahat et al.6 calculated analytically tidal energy conversion into vertical 
normal modes in the case of a unidirectional tide impinging on a Witch of Agnesi ridge for 
three different stratification profiles. For stratification profiles with a strong pycnocline layer, 
mode 1 was the most energetic mode only for wide ridge whereas for constant stratification 
profile mode 1 was almost always the most energetic one.   

 
Influence of the topography height h0  

It is established that the topography height (h0) can also influence the tidal energy 
distribution between vertical modes5. Three simulations with different topography heights: 

݄ ൌ ሾ0.03; 0.04; 0.07ሿ	݉, are now investigated with mode 2 resonance condition (
ఒమ
ఒೝ
ൎ 1). 

The blocking parameter (B = h0/ h2) describes the interaction degree between the topography 
and the pycnocline layer. The more intense the topographic blocking effect (B→1), the higher 
the energy distribution in higher modes (Table 2). For small blocking parameters, B = 0,3-0,4, 
mode 1 is the dominant structure inside the pycnocline layer all over the domain (ܣ,௪ ൏
 ଵ,௪ሻ whereas for higher blocking parameter, B = 0.7, mode 2 is becoming the dominantܣ
vertical structure near the generation site (	ܣଶ,௪   ଵ,௪ሻ. Similarly, Vlasenko et al. calculatedܣ
vertical mode amplitude above continental shelves. They found that the decrease in efficiency 
of the generation of high modes was accompanied by an increase of the depth of the 
continental shelves. Hence, we can confirm that narrow and shallow topographic obstacles are 
identified as efficient generation site of high modes. 

 B=0.3 B=0.4 B=0.7 
A1,w  (ൈ 10ିସ	m/s)  .  ∓ 0.08 .  ∓ 0.1 7.2 ∓ 0.3 
A2,w (ൈ 10ିସ	m/s) 2.2 ∓ 0.05 3.2 ∓ 0.08 ૠ.  ∓ 0.3 
A3,w (ൈ 10ିସ	m/s) 0.6 ∓ 0.04 1.1 ∓ 0.06 3.3 ∓ 0.3 
A4,w (ൈ 10ିସ	m/s) 0.05 ∓ 0.02 0.1 ∓ 0.04 0.9 ∓ 0.2 
TABLE 2 - Spatial average of vertical mode amplitudes over the “near field” area An,w,  in function of 
the blocking parameter B in the case of mode 2 resonance condition: ߣ ൎ  ଶ. The confidenceߣ
intervals (indicated in grey) are defined using twice the standard deviation of the vertical mode 
amplitude inside the “near field” area. 
 

Conclusion  
In summary, we provide a numerical estimate of the tidal energy distribution among 

vertical modes in highly energetic generation sites: strong pycnocline layers above high and 
abrupt sinusoidal topographies. The distribution of the conversion energy over different 
vertical modes is important to evaluate precisely the spatial redistribution of the tidal energy. 
We developed a method to quantify vertical normal mode amplitude in 2D direct numerical 
simulations. Our numerical study highlights a topographic resonance phenomenon on vertical 
mode generation consistent with previous analytical studies5,7. To characterize this resonant 
effect, we define a topographic resonance criterion: mode n has maximal amplitude when its 

wavelength		ߣ is of the same order than the topography width	ߣ: 
ఒ
ఒೝ
ൌ 1. This resonance 

phenomenon is linked to energy exchanges with tidal flow. In our particular configuration, 
near the generation site, vertical mode amplitude an does not always decrease with the mode 
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number n. For wide or small topographies (B<1), mode 1 is the most energetic mode whereas 
for narrow and high topographies (B→1) mode 2 and 3 are more energetic than mode 1. 
Hence, the tidal energy distribution among vertical mode is shown to be dependent on the 

topographic resonance criterion (
ఒ
ఒೝ
ൌ 1) and on the topographic blocking parameter B = h0/ 

h2. In the linear regime, shallow (B→1) and narrow ridges (selecting small	ߣ) are identified 
as generation sites effective at generating high vertical modes. These two criteria could be 
used to differentiate efficient radiative generation sites (tidal energy is mostly injected in 
mode 1) from generation sites where tidal energy is more likely to dissipate locally (tidal 
energy is injected in higher modes). These results are a step towards future work on the 
horizontal distribution of the diapycnal mixing. In future studies, it would be of interest to 
investigate more deeply tidal energy distribution among vertical normal modes in the non-
linear regime.  
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