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Abstract

The Ecopath with Ecosim (EwE) modeling approach combines software for ecosystem trophic mass balance analysis (Ecopath), 
with a dynamic modeling capability (Ecosim) for exploring past and future impacts of fishing and environmental disturbances 
as well as for exploring optimal fishing policies. Ecosim models can be replicated over a spatial map grid (Ecospace) to allow 
exploration of policies such as marine protected areas, while accounting for spatial dispersal/advection effects.

The Ecopath approach and software has been under development for two decades, with Ecosim emerging in 1995, and 
Ecospace in 1998, leading to an integrated and widely applied package. We present an overview of the computational aspects of 
the Ecopath, Ecosim and Ecospace modules as they are implemented in the most recent software version. The paper summarizes 
the capabilities of the modeling system with respect to evaluating how fisheries and the environment impact ecosystems. We 
conclude by a warning about pitfalls in the use of the software for policy exploration.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The modeling approach ‘Ecopath with Ecosim’ 
(EwE, http://www.ecopath.org) is being widely used 
as a tool for analysis of exploited aquatic ecosystems, 
having reached 2400 registered users in 120 coun
tries, and leading to in excess of 150 publications. 
EwE combines software for ecosystem trophic mass 
balance (biomass and flow) analysis (Ecopath) with a 
dynamic modeling capability (Ecosim) for exploring 
past and future impacts of fishing and environmental 
disturbances. It has an elaborate user interface that 
eases a variety of data management chores and calcu
lations that are a cumbersome but necessary part of
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any endeavor to systematically examine an ecosystem, 
its resources, and their interactions and exploitation.

Recent versions of the software have brought 
Ecosim much closer to traditional single-species stock 
assessment, by allowing age-structured representation 
of particular, important populations and by allowing 
users to ‘fit’ the model to data. Ecosim models can be 
replicated over a spatial map grid (Ecospace) to allow 
exploration of policies such as marine protected ar
eas, while accounting for spatial dispersal/advection 
effects and migration.

The Ecopath approach was initiated by Polovina 
(1984) in the early 1980s, and has been under con
tinuous development since 1990 (Christensen and 
Pauly, 1992), with Ecosim emerging in 1995 (Walters 
et al., 1997, 2000), and Ecospace in 1998 (Walters 
et al., 1999), leading to an integrated software pack
age, ‘Ecopath with Ecosim’. We give an overview 
of the computational aspects and capabilities of the 
Ecopath, Ecosim and Ecospace modules as they are
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implemented in the most recent software version 
(EwE Version 5), along with some reflections of po
tential pitfalls related to application of the software.

2. Mass-balance modeling: Ecopath

The core routine of Ecopath is derived from the 
Ecopath program of Polovina (1984), and since mod
ified to make superfluous its original assumption of 
steady state. Ecopath instead bases the parameteriza
tion on an assumption of mass balance over a given 
time period (usually 1 year, but see discussion below 
about seasonal modeling). In its present implemen
tation Ecopath parameterizes models based on two 
master equations, one to describe the production term 
(Eq. (1)), and one for the energy balance for each 
group (Eq. (7)). A summary of symbols used for vari
ables is presented in Table 2.

2.1. Prey mortality is predator consumption

The total production rate Pj for each group i can be 
split in components:

Pi = Y/ + M2,- X Bí + Ei + BA,- +  MO,- x B¡ (1)

where Y¡ is the total fishery catch rate of i, Mii is 
the instantaneous predation rate for group i, Ei the 
net migration rate (emigration — immigration), BA,- 
is the biomass accumulation rate for i, while MO,- is 
the ‘other mortality’ rate for i. p  is calculated as 
the product of Bj,  the biomass of i and (PIB)¡, the 
production/biomass ratio for i. The (PIB)¡ rate under 
most conditions corresponds to the total mortality 
rate, Z  (see Allen, 1971), commonly estimated as part 
of fishery stock assessments. The ‘other mortality’ is 
a catch-all rate including all mortality not elsewhere 
included, and is internally computed from

Pi x (1 -  EE, )
MO,- =

B í
(2 )

where EE,- is called the ‘ecotrophic efficiency’ of i, and 
can be described as the proportion of the production 
that is utilized in the system as described, see Eq. (6).

The predation term, M l, in Eq. (1) serves to link 
predators and prey as

VA <2/ x DCA 
Mii = J 2  J

j=1 Bí
(3)

where the summation is over all n predator groups j  
feeding on group i, Qj  is the total consumption rate 
for group j ,  and DC# is the fraction of predator j ’s diet 
contributed by prey i. Qj  is calculated as the product 
of Bj ,  the biomass of group j  and {Q/B)j ,  the con
sumption/biomass ratio for group j.

An important implication of the equation above is 
that information about predator consumption rates and 
diets concerning a given prey can be used to estimate 
the predation mortality term for the group, or, alterna
tively, that if the predation mortality for a given prey 
is known the equation can be used to estimate the con
sumption rates for one or more predators instead.

For parameterization Ecopath sets up a system with 
(at least in principle) as many linear equations as there 
are groups in a system, and it solves the set for one 
of the following parameters for each group, biomass, 
production/biomass ratio, consumption/biomass ratio, 
or ecotrophic efficiency. The other three parameters 
along with following parameters must be entered for 
all groups, catch rate, net migration rate, biomass ac
cumulation rate, assimilation rate and diet composi
tions.

It was indicated above that Ecopath does not rely 
on solving a full set of linear equations, i.e. there may 
be less equations than there are groups in the system. 
This is due to a number of algorithms included in the 
parameterization routine that wifi try to estimate itera
tively as many ‘missing’ parameters as possible before 
setting up the set of linear equations. The following 
loop is carried out until no additional parameters can 
be estimated:

1. The gross food conversion efficiency, g¡, is esti
mated using

(P/B),
(Q/B)i

(4)

while (PlB)i and (Q/B)¡ are attempted solved by 
inverting the same equation.

2. The P!B ratio is then estimated (if possible) from

Pi Yj + Ej + BA,- +  Qj x DC'p
Bj B¡ x EE,- (5)

This expression can be solved if both the catch, 
biomass and ecotrophic efficiency of group i, and 
the biomasses and consumption rates of all preda
tors on group i are known (including group i if
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a zero order cycle, i.e. ‘cannibalism’ exists). The 
catch, net migration and biomass accumulation 
rates are required input, and hence always known.

3. The EE is sought estimated from

Yj + E, + BA,- +  B, x M ii ...
EE,- = ---------------- - ----------------- (6)

* i

where the predation mortality M l is estimated from 
Eq. (3).

4. In cases where all input parameters have been 
estimated for all prey for a given predator group 
it is possible to estimate both the biomass and 
consumption/biomass ratio for such a predator. 
The details of this are described in the EwE Help 
System, Appendix 4, Algorithm 3 (available at 
http://www.ecopath.org and distributed with EwE).

5. If for a group the total predation can be estimated 
it is possible to calculate the biomass for the group 
as described in detail in the EwE Help System, 
Appendix 4, Algorithm 4.

6. In cases where for a given predator j  the PIB, B,  and 
EE are known for all prey, and where all predation 
on these prey apart from that caused by predator 
j  is known the B  or QIB  for the predator may be 
estimated directly.

7. In cases where for a given prey the PIB, B, EE 
are known, and where the only unknown predation 
is due to one predator for which the B  or QIB  is 
unknown, it may be possible to estimate the B  or 
QIB  of the prey in question.

After the loop no longer results in estimate of any 
‘missing’ parameters a set of linear equations is set 
up including the groups for which parameters are still 
‘missing’. The set of linear equations is then solved 
using a generalized method for matrix inversion de
scribed by (Mackay, 1981). It is usually possible to 
estimate PIB  and EE values for groups without re
sorting to including such groups in the set of linear 
equations.

The loop above serves to minimize the computa
tions associated with establishing mass-balance in 
Ecopath. The desired situation is, however, that the 
biomasses, production/biomass and consumption/ 
biomass ratios are entered for all groups and that only 
the ecotrophic efficiency is estimated, given that no 
procedure exists for its field estimation. As a con
sequence, the estimated ecotrophic efficiency can be

considered an expression of model uncertainty rather 
than an ecologically meaningful term.

In some, but very rare, cases it may not be possible 
to estimate the ‘missing’ parameters using the meth
ods referred to above, for instance if a feeding cycle 
(e.g. A eats B  eats C eats A), is included where the 
biomasses of all groups in the cycle are unknown. In 
such cases a routine will break the cycle by removing 
the link where the difference between the trophic level 
of the consumer and the prey has the lowest value, typ
ically this will be where a low trophic-level consumer 
eats high trophic-level prey (which are actually lower 
trophic-level juveniles). An iterative routine will then 
estimate all ‘missing’ biomasses.

The mass balance constraint implemented in the two 
master equations of Ecopath (see Eqs. (1) and (7)) 
should not be seen as questionable assumptions but 
rather as filters for mutually incompatible estimates of 
flow. One gathers all possible information about the 
components of an ecosystem, of their exploitation and 
interaction and passes them through the ‘mass balance 
filter’ of Ecopath. The result is a possible picture of 
the energetic flows, the biomasses and their utiliza
tion. The more information used in the process and the 
more reliable the information, the more constrained 
the outcome will be.

2.2. The energy balance o f a group

After the ‘missing’ parameters have been estimated 
so as to ensure mass balance between groups energy 
balance is ensured within each group using the fol
lowing equation:

Consumption =  production +  respiration

+  unassimilated food (7)

This equation is in line with Winberg (1956), who 
defined consumption as the sum of somatic and go
nadal growth, metabolic costs and waste products. The 
main differences are that Winberg focused on mea
suring growth, where we focus on estimating losses, 
and that the Ecopath formulation does not explicitly 
include gonadal growth. The Ecopath equation treats 
this as included in the predation term (where nearly 
all gonadal products end up in any case). This may be 
a shortcoming, but it is one that can be remedied, and 
actually is in Ecosim as described below.

http://www.ecopath.org
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We have chosen to perform the energy balance so 
as to estimate respiration from the difference between 
consumption and the production and unassimilated 
food terms. This mainly reflects our focus on applica
tion for fisheries analysis, where respiration rarely is 
measured while the other terms are more readily avail
able. To facilitate computations we have, however, in
cluded a routine (‘alternative input’) where the energy 
balance can be estimated using any given combination 
(including ratios) of the terms in the equation above.

Ecopath can work with energy as well as with nutri
ent related currencies. If a nutrient-based currency is 
used in Ecopath the respiration term is excluded from 
the above equation (as nutrients are not respired), and 
the unassimilated food term is estimated as the differ
ence between consumption and production.

2.3. Addressing uncertainty

A resampling routine, Ecoranger, has been included 
in EwE to accept input probability distributions for 
the biomasses, consumption and production rates, 
ecotrophic efficiencies, catch rates, and diet composi
tions. Using a Monte Carlo approach a set of random 
input variables is drawn from user-selected frequency 
distributions and the resulting model is evaluated 
based on user-defined criteria, and physiological and 
mass balance constraints. The results include proba
bility distributions for the estimated parameters along 
with distributions of parameters in the accepted model 
realizations.

The Ecoranger routine can provide probability dis
tributions for transformation of the input variables. 
The derived probability distributions are likely to be 
narrower than the original distributions indicating that 
we have gained information in the process of check
ing for mass balance constraints, and eliminating 
parameter combinations that violate thermodynamic 
constraints. The information that is gained comes 
from evaluation of structural relationships as imple
mented in the Ecopath model, contrary to standard 
Bayesian approaches, which rely on data sampling. 
Combining such structural information from Ecopath 
with prior probabilities (the original probability dis
tributions) corresponds to combining data with priors 
to derive the posterior distributions in the Bayesian 
sense. A procedure implementing such an approach 
using a ‘sampling-importance-resampling’ scheme

(McAllister et al., 1994) is included in the Ecor
anger module of EwE making it straightforward to 
derive what may be called ‘Bayes marginal posterior 
distributions’ (Walters, 1996).

2.3.1. Categorizing data sources
The Ecoranger module has been available for sev

eral years but only a few examples of its use have 
been published, and so far none has fully exploited its 
Bayesian capabilities. A major reason for this is that 
it was a very data intensive task to describe the proba
bility distributions for all input parameters (including 
the diet compositions matrices). To facilitate this task 
and to make the process more transparent we have im
plemented a ‘pedigree’ (Funtowicz and Ravetz, 1990) 
routine that serves a dual purpose by describing data 
origin, and by assigning confidence intervals to data 
based on their origin (Pauly et al., 2000).

The pedigree routine allows the user to mark the 
data origin using a pre defined table for each type 
of input parameters. An example pertaining to both 
production/biomass and consumption/biomass ratios 
is given in Table 1. The Ecoranger module can sub
sequently pick up the confidence intervals from the 
pedigree tables and use these as prior probability dis
tributions for all input data.

The pedigree index values in Table 1 are also used to 
calculate an overall pedigree index for a given model.

Table 1
Options included in EwE for definition of ‘pedigree’ for consumer 
production/biomass and consumption/biomass ratios in Ecopath

Option Index Cl (%)

Estimated by Ecopath (other model) 0.0 ±80
Guesstimate 0.1 ±70
From other model 0.2 ±60
Empirical relationship 0.5 ±50
Similar group/species, similar system 0.6 ±40
Similar group/species, same system 0.7 ±30
Same group/species, similar system 0.8 ±20
Same group/species, same system 1.0 ±10

Similar option tables are implemented for biomasses, catches, and 
diets. For each group in an ecosystem one of these options is used 
to define the pedigree of the input parameter. The index value is 
used for calculation of a pedigree index. The confidence intervals 
(Cl) are used to describe parameter uncertainty in the balanced 
ecosystem model using the Ecoranger, auto mass balance, and 
Ecosim modules. Index values and confidence intervals are defaults 
that can be changed by users.
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Table 2
List of symbols used

Symbol Description Unit

B Biomass tkm-2
BA; Biomass accumulation rate tkm-2 per year
c Per biomass food intake, same as QIB Per year
DC, Fraction of predator j  s diet contributed by prey i
E The net migration rate (emigration — immigration), or g; x B{ — /; tkm-2 per year
e Emigration rate per unit biomass tkm-2 per year
EE Ecotrophic efficiency
F Instantaneous fishing mortality rate Per year
g Gross food conversion efficiency, estimated as the P/Q ratio
I Immigration rate tkm-2 per year
i Index used for prey groups (all consumer groups can be prey as well as predators)
j Index used for predator groups
K von Bertalanffy curvature parameter Per year
M) Instantaneous ‘other mortality’ rate Per year
m Instantaneous predation rate Per year
n Number of living groups in the model
P Total production rate tkm-2 per year
PIB Production/biomass ratio Per year
Q Total consumption rate, calculated as the product of B  and QIB tkm-2 per year
Q/B Consumption/biomass ratio Per year
SS Summed squared residuals
vÿ Vulnerabilities (rescaled to range [1,&>])
Y Total fishery catch rate tkm-2 per year
Z Total mortality rate, equivalent to the production/biomass ratio Per year

Omits symbols that are used in only one section. Many symbols will have an index (or indices) referring to a group.

The index values for input data scale from 0 for data 
that is not rooted in local data up to a value of 1 for 
data that are fully rooted in local data. Based on the 
individual index value an overall ‘pedigree index’, r, 
is calculated as the average of the individual pedigree 
value based on

r =  J 2 —  (8)
!=1 n

where r i p is the pedigree index value for group i and 
input parameter p  for each of the n living groups in the 
ecosystem; p  can represent either B, PIB, QIB, Y  or the 
diet composition, DC. To scale based on the number 
of living groups in the system, an overall measure of 
fit, t* is calculated (using an equation based on how 
the f-value for a regression is calculated) as

f  =  T X
\ /n  — 2 
V l — T2

(9)

This measure of fit is seen to describe how well 
rooted a given model is in local data. It addresses an

often-aired concern of to which degree ‘models feed 
on models’, i.e. whether models are based on data 
from other models, which again are based on data 
from other models, etc. Work is presently in progress 
to describe the pedigree indices for all published 
Ecopath models where we have access to the model 
descriptions (in excess of 140 cases; Lyne Morisette, 
Fisheries Centre, UBC, personal communication).

2.4. Automated mass-balance

Getting hold of and entering input parameters for 
an Ecopath model is only the start of the modeling 
process, ensuring mass-balance is the next major step. 
Previously this had to be done by manually adjust
ing biomasses, mortality rates, diets, etc., searching 
for data inconsistencies and gradually obtaining a 
balanced model. An iterative method for obtaining 
mass-balance has, however, been added to EwE, of
fering a well defined, reproducible, approach, while 
also allowing exploration of alternative solutions 
based on parameter confidence intervals. Background,
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implementation and computational aspects of the 
auto-mass balance routine are described by Kavanagh 
et al. (2004).

The auto-balancing routine uses the pedigree rou
tine described above to obtain confidence intervals, 
which in turn constrains how far the routine can per
turb parameters from their original values as part of the 
balancing. While seeking to obtain a balanced model 
(i.e. EE,- < 1 for all groups i) with minimal changes to 
input parameters, especially for well-known parame
ters (with narrow confidence intervals), which are al
lowed less adjustment than parameters with wide con
fidence intervals.

At each iteration step, the model is perturbed by 
adjusting the biomass and diet components affecting 
groups with EE > 1. Model perturbation may be per
formed in three different ways:

(1) Random lookup of parameters within confidence 
interval (no memory of current state) similar to the 
Ecoranger approach discussed above, except for 
changing only parameters affecting unbalanced 
groups:

(2) Random steps in the neighborhood of the current 
state:

(3) Gradient descent method using the first derivative 
of EE with respect to the parameter to be per
turbed.

The approach allows for user-defined specification of 
the cost function as well as of the decision logic, which 
includes a simulated annealing method. Also, a Monte 
Carlo approach allows for quantification of sensitivity 
to starting conditions and perturbations.

2.5. Particle size distributions

Based on growth and mortality information (see in
put data) the particle size distribution (PSD: Sheldon 
et al., 1972) for a model can be calculated. A rou
tine for this is included in EwE, where for each living 
group the following steps are conducted:

The time spent in each of a user-defined number of 
weight class is calculated starting at time 0, using

In[1 -  {Wt/W OQ)~b]
t =

- K ■ to ( 10)

length-weight relationship, K the curvature parameter 
of the von Bertalanffy Growth Function (VBGF), and 
to is the usually negative ‘age’ at which the weight is 
estimated to be zero in the VBGF. Once the time spent 
to reach each weight class limit is calculated, the time 
spent in each weight class is calculated by subtraction.

The survival is calculated as

Nt = Nt- At x e~z  At = Nt-dt x e~z  At (11)

where Wt is the lower limit of the weight interval, 
Wœ is the asymptotic weight, b the exponent in the

where Nt is the number alive at time t, Nt-At the num
ber alive at the previous time step, A í before, and Z  
is the total mortality rate, equivalent to the produc
tion/biomass ratio for the group:

The biomass contribution for the group to each 
weight class is calculated as

Bt = Nt x  Wt x  A t (12)

where Bt is the biomass contribution, A iis the time the 
groups spends to grow through the given weight class
(i), and the rest as explained above. Bt is scaled over 
all weight classes so as to sum up to the total biomass 
of the group. The system PSD is calculated, finally, by 
summing up over all groups within each weight class.

2.6. Ecosystem 'health'

The health status of a patient can often be captured 
with a single parameter, the temperature. Many have 
tried to find an index with similar ability to describe 
the health of an ecosystem to avoid the insurmount
able task associated with bottom-up approach sum
ming up the health of all ecosystem components, but 
a clear candidate has not appeared. The effort has led 
to development and description of a variety of system 
indicators, typically though with a given researcher 
exploring only one or a few of the potential indicators 
and on one or a few systems only.

We have sought to include a selection of ecosystem 
indicators in EwE using the criteria that the indicators 
can be estimated based on information included or po
tentially includable in EwE, typically based on quan
tified descriptions of food webs. In doing so we have 
facilitated straightforward calculation of the indices, 
opening for a comparison of their properties through 
application to a variety of the models described using 
Ecopath.

One area of research where we have used this 
approach relates to ecosystem maturity, a perceived
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descriptor of ecosystem ‘health’. Odum (1969, 1971) 
described how ecosystems in a non-deterministic way 
develop over time. We can assume an undisturbed 
ecosystem to be mature sensu Odum. Implications of 
this include that in a more mature system all niches 
should tend to be filled; that a larger part of the 
energy flows should be through detritus-based food 
webs; that primary production should be more effi
ciently utilized; that the total system biomass/energy 
throughput ratio should be higher, etc.

When ecosystems are disturbed, notably by fishing, 
we expect their maturity to decrease. This was indi
cated by the findings of Christensen (1995a), who used 
a series of indicators to rank a large number of ecosys
tem representations after maturity, and concluded that 
the ranking obtained was in agreement with the ex
pected state of maturity. The study included several 
ecosystems for which the maturity state could be com
pared before and after a disturbance, and the findings 
were in all cases in agreement with disturbances lead
ing to a reduction in maturity. Christensen and Pauly 
(1998) modeled the recent and the unfished state for 
two marine ecosystems, and for both systems con
cluded that the indices of ecosystem maturity for the 
fished and unfished states in all cases were in agree
ments with Odum’s theory.

While these studies cannot be seen as providing 
definitive answers, they do indicate that it is feasible to 
use a composite of ecosystem indices to describe the 
state of a given system and how it may have changed 
over time. We intend to explore this further, and to 
include a number of additional measures of ecosystem 
‘health’ in EwE.

The selection of ecosystem indicators referred to 
above is included in EwE as part of a series of network 
analyses. In overview form (see references below and 
the EwE Help system for more detailed descriptions) 
the following routines are among those included:

• Cycling index', fraction of an ecosystem’s through
put that is recycled (Finn, 1976).

• Predatory cycling index, corresponds to the cycling 
index but computed with cycles involving detritus 
groups excluded.

• Cycles and pathways', a routine presents the numer
ous cycles and pathways that are defined by the 
food web representing an ecosystem based on an 
approach suggested by Ulanowicz (1986).

• Connectance index, defined for a given food web 
as the ratio of the number of actual links to the 
number of possible links. Feeding on detritus (by 
detritivores) is included in the count, but the oppo
site links (i.e. detritus ‘feeding’ on other groups) are 
disregarded.

• System omnivory index, defined as the average 
omnivory index of all consumers weighted by the 
logarithm of each consumer’s food intake. The log
arithms are used as weighting factors because it can 
be expected that the intake rates are approximately 
log normally distributed. The system omnivory in
dex is a measure of how the feeding interactions are 
distributed between trophic levels. An omnivory 
index is also calculated for each consumer group, 
and it here is a measure of the variance of the 
trophic level estimate for the group.

• Trophic level decomposition: aggregates the system 
into discrete trophic levels sensu Lindeman based 
on an approach suggested by Ulanowicz (1995). The 
routine reverses the routine for calculation of frac
tional trophic levels.

• Trophic transfer efficiencies: calculated for a given 
trophic level as the ratio between the sum of the 
exports plus the flow that is transferred from one 
trophic level to the next, and the throughput on the 
trophic level. The transfer efficiencies are used for 
construction of trophic pyramids, and others.

• Primary production required (PPR): to estimate the 
PPR (Christensen and Pauly, 1993) to sustain the 
catches and the consumption by the trophic groups 
in an ecosystem the following procedure is used. 
All cycles are removed from the diet compositions, 
and all pathways in the flow network are identified 
using the method suggested by Ulanowicz (1995). 
For each pathway the flows are then raised to pri
mary production equivalents using the product of 
the catch, the consumption/production ratio of each 
path element times the proportion the next element 
of the path contributes to the diet of the given path 
element.

• Mixed trophic impact (MTI): Leontief (1951) devel
oped a method for input-output analysis to assess 
the direct and indirect interactions in the economy 
of the USA, using what has since been called the 
‘Leontief matrix’. A modified input-output analy
sis based on the procedure described by Ulanowicz 
and Puccia (1990) is implemented in EwE. The MTI
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describes how any group (including fishing fleets) 
impacts all other groups in an ecosystem trophically. 
It includes both direct and indirect impact, i.e. both 
predatory and competitive interactions.

The MTI for living groups is calculated by con
structing an n x  n matrix, where the j, i\h element 
representing the interaction between the impacting 
group j  and the impacted group i is

MTIyy =  DC/y -  FCÿ (13)

where DCyy is the diet composition term expressing 
how much i contributes to the diet of j, and FC^ is a 
host composition term giving the proportion of the 
predation on j  that is due to i as a predator. When 
calculating the host compositions the fishing fleets 
are included as ‘predators’.

For each fishing fleet a ‘diet composition’ is cal
culated representing how much each group con
tributes to the catches, while the host composition 
term as mentioned above includes both predation 
and catches. The matrix is inversed using a standard 
matrix inversion routine.

• Ascendency. EwE includes a number of indices re
lated to the ascendency measure described in detail 
by Ulanowicz (1986). Ascendency is seen as a mea
sure of ecosystem growth and development.

3. Time-dynamic simulation: Ecosim

The basics of Ecosim are described in detail by 
Walters et al. (1997, 2000), and will only be given a 
cursory treatment here, omitting details that have been 
previously published, focusing instead in describing 
more recent additions to the modeling approach. In 
overview, Ecosim consists of biomass dynamics ex
pressed through a series of coupled differential equa
tions. The equations are derived from the Ecopath mas
ter Eq. (1), and take the form

~ d ~ Qß ~ 12 öy+ 1
i  i

- (MOi + Fi + eA x Bí (14)

where dB¡/dt represents the growth rate during the 
time interval dt of group i in terms of its biomass, 
Bí , gi is the net growth efficiency, Eq. (4), M)/ the 
non-predation (‘other’) natural mortality rate esti-

V'(B¡- V)
Available prey

Predator

Unavailable prey

Fig. 1. Simulation of flow between available ( V¡) and unavailable 
(Bj — Vi) prey biomass in Ecosim. ¿z/ is the predator search rate 
for prey i, v is the exchange rate between the vulnerable and 
un-vulnerable state. Fast equilibrium between the two prey states 
implies Vj = vBj/(2v + aBj). Based on Walters et al. (1997).

mated from the ecotrophic efficiency, iy is fishing 
mortality rate, e¡ is emigration rate, 7/ is immigration 
rate (assumed constant over time, and hence inde
pendent of events in the ecosystem modeled), and 
ei x Bí — Ii is the net migration rate of Eq. (1). The 
two summations estimates consumption rates, the first 
expressing the total consumption by group i, and the 
second the predation by all predators on the same 
group i. The consumption rates, Qß,  are calculated 
based on the ‘foraging arena’ concept, where B{ s are 
divided into vulnerable and invulnerable components 
(Walters et al., 1997, Fig. 1), and it is the transfer rate 
(vjj) between these two components that determines if 
control is top-down (i.e. Lotka-Volterra), bottom-up 
(i.e. donor-driven), or of an intermediate type. The 
set of differential equations is solved in Ecosim using 
an Adams-Basforth integration routine (default) or a 
Runge-Kutta fourth-order routine.

Detritus flows are for each detritus group and for 
each time step estimated from the amount of detritus 
imported, transferred from other detritus groups, and 
produced by ecosystem groups (from unassimilated 
food plus contribution from dead organisms) less the 
amount of detritus eaten by living groups, transferred 
to other detritus groups and the export of detritus.

3.1. Predicting consumption

Ecosim bases the crucial assumption for prediction 
of consumption rates on a simple Lotka-Volterra or 
‘mass-action’ assumption, modified to consider ‘for
aging arena’ properties. Following this, prey can be 
in states that are or are not vulnerable to predation,
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for instance by hiding (e.g. in crevices of coral reefs 
or inside a school), when not feeding, and only be
ing subject to predation when having left their shelter 
to feed (Fig. 1). In the original Ecosim formulations 
(Walters et al., 1997, 2000) the consumption rate for 
a given predator feeding on a prey was thus predicted 
from the effective search rate for predator-prey spe
cific interactions, base vulnerabilities expressing the 
rate with which prey move between being vulnerable 
and not vulnerable, prey biomass, predator abundance 
(numbers for split pool groups as discussed later, and 
biomasses for other groups).

The model as implemented implies that ‘top-down 
versus bottom-up’ control is in fact a continuum, 
where low v ’s implies bottom-up and high v’s 
top-down control. The input vulnerability rates {vy) in 
EwE are scaled to range from 0 to 1, with 0.3 serving as 
default for mixed control, and 0 implying bottom-up, 
1 implying top-down control. The actual vulnerabili
ties {v,j) used in the computations are rescaled from 
the entered vy ’s as: vy = exp[2 x (exp(uÿ) — 1)].

As a consequence of user requests for adding new 
facilities the equation for describing consumption has 
gradually grown to the following, more elaborate ex
pression:

ay x ny x Bj x Bj x Tj x Tj

Qij =   (15)
V jj V j j  X  I )  X  Mjj -\-  cijj X  M  jj

x Bj x \ , 7  x Tj/Dj

where ciy is the rate of effective search for i by j,  Tj 
represents prey relative feeding time, Tj the predator 
relative feeding time, S y the user-defined seasonal or 
long term forcing effects, My  the mediation forcing 
effects, and D¡ represents effects of handling time as 
a limit to consumption rate:

; 1 +  H k  akj x Bk x Tk x MkJ

where hj is the predator handling time. The feeding 
time factors, allocation of food for growth and re
cruitment, fecundity constraints, etc. are discussed by 
Walters et al. (1997, 2000). The consumption Eq. (15) 
above includes terms to describe forcing functions and 
mediation effects. These are described in more detail 
below.

3.1.1. Forcing functions
The impact of physical or other environmental fac

tors on ecosystem groupings may be modeled using 
forcing functions are of two types:

• seasonal, which may be applied to biomass produc
tion or to egg production (for groups with onto
genetic representation) occurring within a year and 
repeated in all years of the run: and

• longer term, which may be applied to modify the 
QIB ratio of the consumer groups, to represent, for 
instance, decadal regime shifts, and to force con
taminant contributions (see Section 3.4) below.

3.1.2. Mediation
It is not uncommon for some third type of organism 

to affect the feeding rate of one type of organism on 
another. At least two types of effects are possible:

• Facilitation: The third organism type behaves in 
some way that makes prey more available to a 
predator when the third organism is more abundant. 
For example, pelagic piscivores like tuna may drive 
smaller fishes to the surface making them more 
accessible for birds. This is a concern for modeling 
marine mammals and bird dynamics, especially 
in areas where fishing has reduced abundances of 
tunas and billfishes.

• Protection: The third organism provides protection 
for a prey type when the third organism is more 
abundant. For example, juvenile fishes may use 
corals, macrophytes, and/or sponges for protection 
from predators, and fishing may directly impact 
these ‘cover’ types, making the juvenile fishes 
accessible for predation.

3.2. Tife history handling

Ecosim offers to ways to handle life history dy
namics, through splitting groups in adult and juvenile 
components, and through a recently added facility for 
modeling of multiple life stages.

3.2.1. Adult-juvenile split 
To better represent ontogenetic shifts in Ecosim 

groups can be split in juvenile and adult components, 
Ecosim applies a Deriso-Schnute delay-difference 
model (Deriso, 1980: Schnute, 1987) to keep track of 
the number that recruits from juvenile to adult stages,
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and the number at age/size in the adult groups. The 
implementation and computational aspects of this are 
described by Walters et al. (2000).

The delay-difference representation of population 
age and size structure permits explicit representation 
of changes in growth, mortality, and recruitment pro
cesses with changing feeding conditions. It also makes 
it straightforward to include: (1) changes in how food 
intake is allocated between growth and reproduction 
as food conditions varies: (2) changes in vulnerability 
to predation associated with changes in feeding be
havior as prey densities vary: and (3) recruitment con
straints related to juvenile size and fecundity. These 
aspects will be described further below.

3.2.2. Multiple stanza representations
EwE users can create a set of biomass groups rep

resenting life history stages or stanzas for species that 
have complex trophic ontogeny. Mortality rates and 
diet composition are assumed to be similar for indi
viduals within each stanza. The procedure requires 
baseline estimates of total mortality rate, Z  and diet 
composition for each stanza, but biomass, QIB, and 
biomass accumulation, BA for one ‘leading’ stanza 
only.

For Ecopath mass balance calculations, the total 
mortality rate Z  entered for each stanza-group is used 
to replace the Ecopath PI B  for that group. Further, the 
B  and QIB for all stanza-groups besides the leading 
(entry) stanza are calculated before entry to Ecopath, 
using the assumptions that:

(1) body growth for the species as a whole follows a 
von Bertalanffy growth curve with weight propor
tional to the length-cubed:

(2) the species population as a whole has had rela
tively stable mortality and relative recruitment rate 
for at least a few years, and so has reached a sta
ble age-size distribution.

Under the stable age distribution assumption, the 
relative number of age a animals is given by Ia/  h , 
where the sum is over all ages, and la is the population 
growth rate-corrected survivorship:
]a =  BA/b (17)

where the sum of E s  is over all ages up to a, and 
the BA IB term represents effect on the numbers at 
age of the population growth rate. Further, the relative

biomass of animals in stanza s should be

bs =
T  . I a X Wa■ßs.min

V ^ m a x  j2-^a=\la
( 18)

where wa =  [1 — exp(—K  x a)]3 is the von Berta
lanffy prediction of relative body weight at age a, s, 
min and s, max are the youngest and oldest age for 
animals in stanza s, and amax is the oldest age in
cluded overall. Knowing the biomass for one leading 
stanza, and the bs for each stanza s, the biomasses for 
the other stanzas can be calculated by first calculating 
population biomass B = Beading ¿/^leadings, then set
ting Bs = b s x B for the other stanzas. QIB estimates 
for non-leading stanzas are calculated with a similar 
approach. This assumes that the feeding rates vary 
with age as the 2/3 power of body weight (a ‘hidden’ 
assumption in the von Bertalanffy growth model). 
This method for ‘extending’ biomass and QIB esti
mates over stanzas avoids a problem encountered in 
‘split-group’ EwE representations, where users could 
enter juvenile biomasses and feeding rates quite in
consistent with the adult biomasses and feeding rates 
that they had entered. The internal calculations of 
survivorship and biomass are done in monthly age 
steps, so as to allow finer resolution than 1 year in 
the stanza biomass and mortality structure (e.g. lar
val and juvenile stanzas that last only one or a few 
months).

The stanza age-size distribution information (la, 
wa) is used to initialize a fully age-size structured 
simulation for the multi-stanza populations. That is, 
for each monthly time step in Ecosim, numbers at 
monthly ages Na t and body weights wa t are updated 
for ages up to the 90% maximum body weight age 
(older, slow growing animals are accounted for in 
an ‘accumulator’ age group). The body growth wag 
calculations are parameterized so as to follow von 
Bertalanffy growth curves, with growth rates depen
dent on body size and (size- and time-varying) food 
consumption rates. Fecundity is assumed propor
tional to body weight above a weight at maturity, and 
size-numbers-dependent monthly egg production is 
used to predict changes in recruitment rates of age 0 
fish. Compensatory juvenile mortality is represented 
through changes in Z  for juvenile stanzas associated 
with changes in foraging time and predator abun
dances, as in split-group calculations.
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In Ecospace (see below), it is not practical to dy
namically update the full multi-stanza age structures 
for every spatial cell due to computer time and memory 
limits. The multi-stanza dynamics are retained, but the 
population numbers at age are assumed to remain close 
to equilibrium (changes in numbers at age associated 
with changes in mortality rates, foraging times, etc. are 
assumed to ‘immediately’ move the numbers-at-age 
composition to a new equilibrium). We have found 
that this moving-equilibrium representation of popu
lation numbers generally gives results quite close to 
those obtained when full age-size accounting is done 
dynamically, provided feeding and mortality rates do 
not change too rapidly. This is similar to the general 
finding with Ecospace that time predictions of overall 
abundance change are quite similar to those obtained 
with Ecosim, even though the ‘dynamic’ calculation 
in Ecospace is really just a stepwise movement toward 
predicted spatial equilibrium values for all variables.

3.3. Nutrient recycling and limitation

Ecosim uses a simple strategy to represent nutri
ent cycling and potential nutrient limitation of pri
mary production rates. It is assumed that the system at 
any instant in time has a total nutrient concentration, 
NT, which is partitioned between nutrient ‘bound’ in 
biomass versus free in the environment (accessible to 
plants for nutrient uptake). That is, TTs represented as 
the sum:

NT = Bi + Nf (19)
i

where rj¡ is (fixed) nutrient content per unit of pool i 
biomass, and Nf is free nutrient concentration. Then 
assuming that NT varies as
1TV TT

 =  ƒ -  v x NT (20)
di

where I  is total inflow rate to the system from all nu
trient loading sources, and v is total loss rate from 
the system due to all loss agents (volume exchange, 
sedimentation, export in harvests, etc.), and that v is 
relatively large, NT is approximated in Ecosim by 
the (possibly moving) equilibrium value NT =  I/v. 
Changes in nutrient loading can be simulated by as
signing a time forcing function number to NT, in which 
case NT is calculated as NT =  f t x NTo, where NTo

is the Ecopath base estimate of NT, and ft is a time 
multiplier (ƒ) =  1 implies Ecopath base value of NT). 
Under the moving equilibrium assumption, changes in 
ft can be viewed as caused by either changes in input 
rate I  or nutrient loss rate v. The Ecopath base esti
mate NTo of total nutrient is entered by specifying the 
base free nutrient proportion p f =  IVf/NTo on entry to 
Ecosim, from which we can calculate NTo as simply

NT0 =  ^  m X Bi (21)
1 -  pf

Primary production rates for producer pools j  are 
linked to free nutrient concentration during each simu
lation through assumed Michaelis-Menten uptake re
lationships of the form

(  — \  —  X t y y \
\ B j j ~  K j  +  Nf

3.4. Predicting movement and accumulation o f 
tracers in food webs

Ecosim flow rates along with auxiliary information 
about factors such as isotope decay rate and physical 
exchange rates can be used to predict changes in con
centrations of chemicals (e.g. organic contaminants 
and isotope tracers) that passively follow the biomass 
flows. The dynamic equations for such passive flow 
differ from biomass flow rate equations, and are gener
ally linear dynamical equations with time-varying rate 
coefficients that depend on the biomass flow rates.

A routine, Ecotracer, has been implemented to 
model such movement and accumulation of contam
inants and tracers in food webs allowing simulation 
of one tracer or contaminant type while the biomass 
dynamics equations in Ecosim are being solved in 
parallel. Tracer molecules are assumed to be either 
in the ‘environment’ (typically the water), or in the 
biota at any moment. Molecules are assumed to 
flow between pools at instantaneous rates equal to 
the probabilities of being ‘sampled’ as part of the 
biomass flow. The routine also allows for direct flows 
from the environment into pools, representing direct 
uptake or absorption of the tracer material, and for 
differential decomposition/decay/export rates by pool 
and from the environmental pool. Schematically, the 
flow of tracer molecules through any biomass pool
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Uptake from food—

Direct uptake from 
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T racer/contaminant 
concentration in 

pool i

-•Predation

— »Detritus
(egestion, death) 
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-►Metabolism, 
decay

Fig. 2. Representation of the flow of tracer molecules through a 
biomass pool.

is represented by the components shown below (see 
also Fig. 2).

In the rate equation for time changes in contaminant 
concentration in pool i, these components are repre
sented as follows:

(1) Uptake from food: Cj x GC/ x Qß/Bj,  where Cy 
concentration in food y; GC/: proportion of food 
assimilated by type i organisms; Qß. biomass flow 
rate from y to i, By. biomass of food y;

(2) Direct uptake from environment. u¡ x Bí x  C o, 
where uf. parameter representing uptake per 
biomass per unit time and per unit environmental 
concentration; Bf. biomass in pool i\ Co: environ
mental concentration;

(3) Concentration in immigrating organisms'. c¡ x //, 
where q: a parameter giving tracer per unit 
biomass in immigrating biomass; If. biomass of 
pool i immigrants per time;

(4) Predation: Ci x Qÿ/Bf,
(5) Detritus: C/ x MO/ +  (1 — GC/) x J2j Cj x Qji/Bj, 

where MO/ : non-predation mortality rate of type i 
(per year) ;

(6) Emigration: q  x C/, where q: emigration rate (per 
year);

(7) Metabolism: d¡x C¡,where d¡ is the summed
metabolism and decay rate for the material while 
in pool i.

3.5. Fleet and effort dynamics

fisher investment and operating decisions (‘bionomie’ 
dynamics, fishers as dynamic predators).

When the fleet/effort response option is invoked, 
Ecosim replaces all previously entered time patterns 
for fishing efforts and fishing rates with simulated 
values generated as each simulation proceeds. The 
fleet/effort dynamics simulation model uses two time 
scales of fisher response: (1) a short time response of 
fishing effort to potential income from fishing, within 
the constraints imposed by current fleet size, and
(2) a longer time investment/deprecation ‘population 
dynamics’ for capital capacity to fish (fleet size, vessel 
characteristics). These response scales are represented 
by two ‘state variables’ for each gear type g. EgJ is 
the current amount of active, searching gear (scaled 
to 1.0 at the Ecopath base fishing mortality rates), 
and Kg t is the fleet effort capacity (EgJ < KgJ). At 
each time step, a mean income per effort index IgJ is 
calculated as IgJ =  J2i<lg,i x Bi x Pg,i> where i is 
the ecological species or biomass group, qgj  is the 
catchability coefficient (possibly dependent on />/) 
for species i by gear g, and Pgj  is the market price 
obtained per biomass of i by gear g  fishers. Also, 
mean fleet profit rates PRgJ for fishing are calculated, 
equal to (IgJ — cg) x EgJ, where cg is the cost of a 
unit of fishing effort for gear g. For each time step, 
the ‘fast’ effort response for the next (monthly) time 
step is predicted by a sigmoid function of income per 
effort and current fleet capacity:

1 =
K g,t x 
IP +  IPhg +  Lg4

(23)

Here, 7hg and p  are fleet-specific response parameters, 
where the income level needed for half of the maxi
mum effort is /hg and p  represents a ‘heterogeneity’ 
parameter for fishers: high p  values imply all fishers 
‘see’ income opportunity similarly, while lowp  values 
imply fishers initiate their effort over a wide range of 
mean incomes, as shown in Fig. 3.

Ecosim users can specify temporal changes in fish
ing fleet sizes and fishing effort in three ways: (1) 
by sketching temporal patterns of effort in the model 
run interface; (2) by entering annual patterns via ref
erence files along with historical ecological response 
data; and (3) by treating dynamics of fleet sizes and 
resulting fishing effort as unregulated, and subject to

3.6. Compensa tory mechanisms

Sustaining fisheries yield when fishing reduces 
stock size depends on the existence of compensatory 
improvements in per capita recruitment, growth, 
and/or natural mortality rates. Ecosim allows a va
riety of specific hypotheses about compensatory
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Effort High P . /
Egj <4.0) 7,

.X
Low p
(1.5)

Current income IgJ

Fig. 3. Effort response relationship describing the statistical be
havior of a fleet of fishers that have heterogeneous fishing abili
ties and perceptions of the current income level needed to attract 
their participation. The slope of the plot represents the amount of 
additional fishing effort expected for each increment in mean in
come; it is steepest at the mean income level where the majority 
of fishers see the possibility of just breaking even by going out.

mechanisms, and these mechanisms broadly fall in 
two categories:

• direct—changes caused over short time scales (of 
the order of 1 year) by changes in behavior of or
ganisms, whether or not there is an ecosystem-scale 
change due to fishing; and

• indirect—changes over longer time scales due to 
ecosystem-scale responses such as increased prey 
densities and/or reduced predator densities.

Usually we find the direct effects to be most im
portant in explaining historical response data. Here 
we describe how to generate alternative models or hy
potheses about direct compensatory responses; these 
hypotheses fall in three obvious categories: recruit
ment, growth, and natural mortality.

3.6.1. Compensatory recruitment (models with split 
pools/multiple stanza only)

Compensatory recruitment effects are usually ex
pressed as a flat or dome-shaped relationship between 
numbers of juveniles recruiting to the adult pool ver
sus parental abundance (stock-recruit relation). There 
are two main ways to create such effects in Ecosim:

(a) non-zero feeding time adjustment for the juvenile 
pool combined with fixed time in juvenile stage 
and high EE, or high proportion of the ‘other’ 
mortality (the mortality not accounted for) being 
sensitive to changes in predator feeding time;

(b) zero feeding time adjustment combined with vari
able time in juvenile stage.

Mechanism (a) represents density-dependent 
changes in juvenile mortality rate associated with 
changes in feeding time and predation risk, while
(b) represents density-dependent changes in juve
nile growth rate and hence total time spent exposed 
to high predation rates over the juvenile life stage. 
Other, generally weaker compensatory responses can 
also be caused by changes in adult energy allocation 
to reproduction. For mechanisms (a) and (b), it is 
usually also important that the vulnerabilities of prey 
to the juvenile group also be relatively low.

3.6.2. Compensatory growth
Compensatory growth rate responses are modeled 

by setting the feeding time adjustment rate to zero, so 
that simulated QIB is allowed to vary with a group’s 
biomass (non-zero feeding time adjustment results in 
simulated organisms trying to maintain Ecopath base 
QIB by varying relative feeding time). Net produc
tion is assumed proportional (growth efficiency) to 
QIB, whether or not this production is due to recruit
ment (for groups where ontogenetic changes are mod
eled) or growth. The QIB increase with decreasing 
pool biomass is enhanced by lowering vulnerability of 
prey to the pool. In the extreme as vulnerability ap
proaches zero (donor or bottom-up control), total food 
consumption rate Q approaches a constant (Ecopath 
base consumption), so QIB becomes inversely propor
tional to B.

3.6.3. Compensatory natural mortality
Compensatory changes in natural mortality rate (M)

can be simulated by combining two effects: non-zero 
feeding time adjustment, and either high EE from Eco
path or high proportion of ‘other’ mortality being sen
sitive to changes in predator feeding time. With these 
settings, especially when vulnerabilities of prey to a 
group are low, decreases in biomass lead to reduced 
feeding time, which leads to proportional reduction in 
natural mortality rate.

3.6.4. Compensation in recruitment
The ‘split pooE representation of juvenile and adult 

biomasses was originally included in Ecosim to allow 
representation of trophic ontogeny (differential diets 
for juveniles and adults). To implement this represen
tation it was necessary to include population numbers 
and age structure, at least for juveniles, so as to prevent



122 V Christensen, C.J. Walters/ Ecological Modelling 172 (2004) 109-139

‘impossible’ dynamics such as elimination of juvenile 
biomass by competition/predation or fishing without 
attendant impact on adult abundance (graduation from 
juvenile to adult pools cannot be well represented just 
as a biomass ‘flow’).

When we elected to include age structure dynamics, 
we in effect created a requirement for model users to 
think carefully about the dynamics of compensatory 
processes that have traditionally been studied in 
terms of the ‘stock-recruitment’ concept and relation
ships. To credibly describe the dynamics of split-pool 
populations, Ecosim parameters for split pools usu
ally need to be set so as to produce an ‘emergent’ 
stock-recruitment relationship that is at least quali
tatively similar to the many, many relationships for 
which we now have empirical data (see data sum
mary in http://www.mscs.dal.ca/~myers/data.html). 
In most cases, these relationships are ‘flat’ over a 
wide range of spawning stock size, implying there 
must generally be strong compensatory increase in 
juvenile survival rate as spawning stock declines (oth
erwise less eggs would mean less recruits on average, 
no matter how variable the survival rate might be).

Ecosim can generate direct (as opposed to just 
predator-prey) compensatory changes in juvenile re
cruitment via at least three alternative mechanisms or 
hypotheses:

1. simple density-dependence in juvenile production 
rate by adults, due to changes in adult feeding rates 
and fecundity (not a likely mechanism) :

2. changes in duration of the juvenile stage and hence 
in total time exposed to relatively high predation 
risk:

3. changes in juvenile foraging time (and hence ex
posure to predation risk) with changes in juvenile 
feeding rates.

For all of these mechanisms, compensatory effects are 
increased (recruitment relationship flat over a wider 
range of adult stock size, steeper slope of recruitment 
curve near the origin) by

1. limiting availability of prey to juveniles by forcing 
juveniles to use small ‘foraging arenas’ for feeding:

2. make effective time exposed to predation while 
feeding drop directly with decreasing juvenile 
abundance (simulates possibility that when juve
niles are less abundant, remaining ones may be

able to forage ‘safely’ only in refuge sites with
out exposing themselves to predation risk). This 
option should be used only if field natural history 
observation indicates that the juveniles do in fact 
restrict their distribution to safe habitats when at 
very low abundance.

3.7. Parameter sensitivity

Ecosim does not include complete formal sensitivity 
analyses to test the effect of all input parameters. There 
are, however, a number of routines that can be used to 
examine various aspects of the model sensitivity, and 
we expect that additional routines will be added.

Ecosim runs can be repeated as Monte Carlo sim
ulations with initial Ecopath biomass estimates cho
sen from normal distributions centered on the initial 
input estimates (with confidence intervals that can be 
based on the model pedigree, as discussed above). 
Each Monte Carlo simulation trial begins by select
ing at least one random biomass combination and 
re balancing the Ecopath model: the random selection 
is repeated until a balanced model is found—a pro
cess is similar to the Ecoranger method for analysis of 
uncertainty for Ecopath parameters described above. 
Then the resulting balanced Ecopath model is used to 
initialize an Ecosim run.

The results can be shown as simple ‘bands of 
uncertainty’ giving indications for how sensitive 
Ecosim results are to input parameter quality. Strong 
divergence in biomass time patterns among simula
tion trials under this option is usually associated with 
changes in fishing mortality rate estimates.

If time series data have been included in the analysis 
(see below) it is possible to retain the best fitting es
timates, i.e. the parameters which minimize the sums 
of squared residuals (SS) between model and observa
tions. This approach (technically known as a ‘Matyas 
search’ technique) is useful in parameter estimation 
and optimization problems where the parameters being 
varied can result in non-feasible solutions (constraint 
violations) but where the feasible parameter values 
are not readily predicted from constraint equations. 
Non-feasible solutions commonly arise when Ecopath 
biomasses are changed so as to violate mass balance 
(e.g. to values that would imply EE > 1.0). In fact, we 
cannot use other nonlinear estimation procedures to 
search for better initial (Ecopath) biomass estimates as

http://www.mscs.dal.ca/~myers/data.html
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we do for some Ecosim parameters, since these proce
dures generally rely upon there being smooth change 
in the SS criterion with changes in the parameters. 
Such procedures use the gradient in SS to decide steps 
in the parameter estimates, and good steps cannot be 
efficiently estimated when any step can unpredictably 
result in violation of mass balance constraints.

While there has been no comprehensive study pub
lished of Ecosim parameter sensitivity, our preliminary 
experience indicates that simulations are very sensitive 
to the ‘behavioral exchange rate’, or ‘vulnerability’. 
This parameter expresses the exchange rate between 
the prey being in vulnerable and non-vulnerable states 
(Fig. 1). It is generated by a multitude of processes, 
e.g. physical mixing, movement of organisms between 
resting/hiding and active feeding states, dispersal (vul
nerability to predators while moving), growth into and 
out of vulnerable size range, and behavioral reactions 
to growth in body parasite loads.

The vulnerability parameter is not subject to direct 
measurement. There are, however, other ways of esti
mating it:

1. Sensitivity analysis (see the section below) :
2. Fitting to time series data (see the section below):
3. Two model comparisons, build Ecopath models for 

a system covering two different time periods, and 
use a routine included in Ecosim to search for vul
nerability parameter settings that with the given ex
ploitation rates will make it possible to move from 
the first to the second model state:

4. Estimate biomass depletion relative to the Ecopath 
base biomasses (EWished/Efo);

5. Estimate maximum fishing mortality relate to nat
ural mortality (Fmax/M).

It is possible and indeed recommended to use all of 
these methods to obtain estimates for the vulnerability 
parameters.

Ecosim simulations are very sensitive to variations 
in primary productivity, see, e.g. Marteli et al. (2002), 
therefore a variety of tools have been added for com
paring simulations with series data as described in 
more detail below.

3.8. Fitting Ecosim to time series data

Based on time series ‘reference’ biomass data, and 
on total mortality of various pools over a particu

lar historical period, along with estimates of changes 
in fishing impacts over that period Ecosim estimates 
a statistical measure of goodness-of-fit to these data 
each time Ecosim is run. This goodness-of-fit mea
sure is a weighted sum of squared deviations (SS) of 
log biomasses from log predicted biomasses, scaled 
in the case of relative abundance data (y) by the max
imum likelihood estimate of the relative abundance 
scaling factor (q) in the equation y =  q x B, where 
B  is the absolute abundance. The reference data se
ries can be assigned a relative weight expressing how 
variable or reliable that type of data is compared to 
the other reference time series. Based on the time se
ries three types of analyses with the SS measure are 
available:

1. determine sensitivity of SS to the critical Ecosim 
vulnerability parameters by changing each one 
slightly then re-running the model to see how 
much SS is changed:

2. search for vulnerability estimates that give better 
‘fits’ of Ecosim to the time series data:

3. search for time series values of forcing functions, 
e.g. annual relative primary productivity that may 
represent historical productivity ‘regime shifts’ im
pacting biomasses throughout the ecosystem.

The searches include a SS minimization procedure 
based on a Marquardt nonlinear search algorithm with 
trust region modification of the Marquardt steps (see, 
e.g. More, 1977). For users familiar with the non
linear estimation procedures used in single-species 
stock assessment, e.g. for fitting production models 
to time series CPLJE data, the procedure implemented 
in Ecosim should be quite familiar. In essence, the 
Ecosim search procedure for vulnerabilities is an ‘ob
servation error’ fitting procedure where vulnerability 
changes usually have effects quite similar to changes 
in population ‘ r  parameters in single-species mod
els. Allowing the search to also include historical pri
mary productivity ‘anomalies’ corresponds to search
ing also for ‘nuisance parameter’ estimates of what 
is usually called the ‘process errors’ in single-species 
assessment (Hilborn and Walters, 1992).

3.9. In search o f an optimum físhing policy

Fisheries management aims to regulate fishing 
mortality rates over time so as to achieve defined
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sustainability objectives, and modeling serves a role 
for providing insight about how high these mortal
ity rates should be, and how they should be varied 
over time. The impacts of alternative exploitation pat
terns can be explored using two different approaches 
in Ecosim, either by sketching fishing mortalities 
over time and evaluate the results, or by a formal 
optimization routine to evaluate the fishing effort 
over time that would maximize particular perfor
mance measures or ‘objective functions’ for manage
ment.

The objective function is defined (by the user) as 
a combination of net economic value, employment, 
mandated rebuilding of target species, and ecologi
cal ‘stability’ criteria, see Walters et al. (2002) for 
details.

Ecosim uses the Davidson-Fletcher-Powell (DFP; 
Fletcher, 1987) nonlinear optimization procedure to 
iteratively improve an objective function by changing 
relative fishing rates, where each year/fleet block de
fines one parameter to be varied by the procedure. The 
parameter variation scheme used by DFP is known as 
a ‘conjugate-gradient’ method, which involves testing 
alternative parameter values so as to locally approxi
mate the objective function as a quadratic function of 
the parameter values, and using this approximation to 
make parameter update steps. It is one of the more 
efficient algorithms for complex and highly nonlinear 
optimization problems.

The search procedure results in what control sys
tems analysts call an ‘open loop policy’, i.e. a pre
scription for what to do at different future times 
without reference to what the system actually ends up 
doing along the way to those times. In practice, actual 
management needs to be implemented using feedback 
policies where harvest goals are adjusted over time as 
new information becomes available and in response 
to unpredicted ecological changes due to environmen
tal factors. But this need for feedback in application 
does not mean that open loop policy calculations are 
useless; rather, we see the open loop calculations as 
being done regularly over time as new information 
becomes available, to keep providing directional guid
ance for where the system can/should be heading. For 
an example of this approach to design of policies for 
dealing with decadal-scale variation in ocean produc
tivity for single-species management, see Walters and 
Parma (1996).

3.9.1. Maximizing risk-averse log utility for 
economic and existence values

One option in the search procedure for optimum 
fishing patterns is to search for relative fleet sizes that 
would maximize a utility function of the form

uq x log(NPV) +  u’2 x S x log(ß) — u>3 x V (24)

where the W j ’s  are utility weights, and the utility com
ponents NPV, Sx\og{B),  and Fare defined as follows:

(1) NPV is net present economic value of harvests, 
calculated as discounted sum of catches over all 
fleets and time multiplied with prices minus costs 
of fishing, i.e. the discounted total profit from fish
ing the ecosystem:

(2) S x log(ß) is an existence value index for all com
ponents of the ecosystem over time. It is calculated 
as the discounted sum over times and biomass 
pools of user-entered structure weights times logs 
of biomasses, scaled to per-time and per-group 
by dividing the sum by the number of simulation 
years and number of living biomass pools;

(3) F is a variance measure for the prediction of 
log(NPV) +  S x log(ß). It is assumed to be pro
portional to how severely the ecosystem is dis
turbed away from the Ecopath base state, where 
disturbance is measured at each time in the sim
ulation by the multidimensional distance of the 
ecosystem biomass state from the Ecopath base 
state. This term is subtracted, implying that in
creased uncertainty about the predictions for more 
severe disturbances causes a decrease in the mean 
of log (NPV). The term represents both aversion 
to management portfolio choices that have high 
variance in predicted returns, and the observation 
that the mean of the log of a random variable 
(NPV x PB) is approximately equal to the log of 
the mean of that variable minus 1/2 the variance 
of the variable. Targe u>3 -values can be used to 
represent both high uncertainty about predictions 
that involve large deviations of biomass from the 
Ecopath base state, and strong risk aversion to 
policy choices that have high uncertainty.

This utility function combines several basic concepts 
of utility. First, the log scaling of value components 
represents the notion of ‘diminishing returns’, that 
adding some amount to any value measure is less im
portant when the value measure is already large than
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it is when the value measure is small. Second, the log 
scaling also represents the notion of ‘balance’, that no 
value component should be ignored entirely (unless 
it is assigned a zero u>,j; the overall utility measure 
approaches minus infinity if either net economic per
formance (NPV) or if any biomass component of the 
ecosystem (any biomass Bj in S  x log(ß)) approaches 
zero. Third, it represents the notion that our predictions 
about the future of both economic performance and 
biodiversity (biomasses) become progressively more 
uncertain for policies that result in more extreme de
partures from the Ecopath base state.

In the terminology of portfolio selection theory 
in economics, fishing policies result in a portfolio 
of value components with ‘expected total returns on 
investment’ equal to NPV + S  x  B.  But policies that 
have higher expected total returns are most often 
also ones that would push the ecosystem into more 
extreme states, and hence represent portfolio choices 
with higher variance in total returns.

3.10. Closed-loop simulations

In order to model not only ecological dynamics over 
time, but also the dynamics of the stock assessment 
and regulatory process, a ‘closed-loop’ simulation rou
tine has been added to Ecosim (see Walters et al., 2002, 
for more details). This routine includes ‘submodels’ 
for the dynamics of assessment (data gathering, ran
dom and systematic errors in biomass and fishing rate 
estimates), and for the implementation of assessment 
results through limitation of annual fishing efforts. The 
closed-loop policy simulation model, allows specifi
cation of:

(1) how many closed-loop stochastic simulation trials 
to do;

(2) type of annual assessment to be used (F = Cl B  
versus F  directly from tags) :

(3) accuracy of the annual assessment procedures (co
efficient of variation of annual biomass or F  esti
mates, by stock): and

(4) value or importance weights for the F  s caused on 
various species by each fishing fleet.

Closed-loop policy simulations could obviously in
clude a wide range of complications related to the de
tails of annual stock assessment procedures, survey 
designs, and methods for direct F  estimation. We as

sume that users will use other assessment modeling 
tools to examine these details, and so need only enter 
overall performance information (coefficients of vari
ation in estimates) into the ecosystem-scale analysis.

4. Spatial simulation: Ecospace

Ecospace is a dynamic, spatial version of Ecopath, 
incorporating all key elements of Ecosim and is de
scribed in detail by Walters et al. (1999). It works by 
dynamically allocating biomass across a user-defined 
grid map while accounting for:

1. symmetrical movements from a cell to its four ad
jacent cells modified by whether a cell is defined 
as ‘preferred habitat’ or not:

2. user-defined increased predation risk and reduced 
feeding rate in non-preferred habitat: and

3. a level of fishing effort that is proportional, in each 
cell, to the overall profitability of fishing in that 
cell, and whose distribution is sensitive to spatial 
fishing costs.

4.1. Prediction o f mixing rates

The instantaneous emigration rates from a given 
cell in Ecospace are assumed to vary based on the 
pool type, the groups preference for the habitat type 
represented by the cell, and a ‘risk ratio’ representing 
how the organisms in the cell respond to predation 
risk. Base dispersal rates are calculated based on this, 
but weighted based on a habitat gradient function in
creasing the probability of organisms moving towards 
favorable habitats. The mechanisms involved in this 
procedure are explained in more detail by Walters 
et al. (1999).

4.2. Predicting spatial físhing patterns

EwE works with multiple fishing fleets, with fishing 
mortality rates (F) initially distributed between fleets 
based on the distribution of catch rates in the under
lying Ecopath base model. In Ecospace the F  s are 
distributed using a simple ‘gravity model’ where the 
proportion of the total effort allocated to each cell is 
assumed proportional to the sum over groups of the 
product of the biomass, the catchability, and the prof
itability of fishing the target groups (Caddy, 1975:
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Hilborn and Walters, 1987). This profitability of fish
ing includes factors such as the cell-specific cost of 
fishing.

4.3. Numerical solutions

Ecospace is based on the same set of differential 
equations as used in Ecosim, and in essence performs 
a complete set of Ecosim calculations for each cell for 
each time step. This represents a formidable amount of 
computations, but it has been possible to take a number 
of shortcuts to speed the processing up to an accept
able rate. Briefly explained the background for this 
takes its starting point in Eq. (14), which expresses the 
rate of change for each biomass pool over time. If the 
rate constants were constant over time (they are not, 
but if!) the biomass would change as a linear dynam
ical system, and would move exponentially towards 
an equilibrium. Hence, if input and output rates were 
constant, the time solutions would behave as weighted 
averages of past values and equilibrium values with 
weights depending on the mortality and migration 
rates. Using such expressions the Ecospace computa
tions can be greatly increased by using a variable time 
splitting, where moving equilibria are calculated for 
groups with high turnover rates (e.g. phytoplankton), 
while the integrations for groups with slower turnover 
rates (e.g. fish and marine mammals) are based on 
a Runge-Kutta method. Comparisons indicate that 
this does not change the resulting time patterns for 
solutions in any noticeable way—hence, the ‘wrong’ 
assumption of time rate constancy introduced above 
is useful for speeding up the computations without 
noticeable detraction of the final results. The result
ing computations are carried out orders of magnitude 
faster than if the time splitting was not included.

4.4. Advection in Ecospace

Advection processes are critical for productivity in 
most ocean areas. Currents deliver planktonic produc
tion to reef areas at much higher rates than would be 
predicted from simple turbulent mixing processes. Up- 
welling associated with movement of water away from 
coastlines delivers nutrients to surface waters, but the 
movement of nutrient rich water away from upwelling 
locations means that production and biomass may be 
highest well away from the actual upwelling locations. 
Convergence (down-welling) zones represent places

where planktonic production from surrounding areas 
is concentrated, creating special opportunities for pro
duction of higher trophic levels.

Ecospace provides a user interface for sketching 
general current patterns or wind/geostrophic forcing 
patterns for surface currents. Based on these patterns 
Ecospace calculates equilibrium horizontal flow and 
upwelling/down-welling velocity fields that maintain 
continuity (water mass balance) and effects of Corio
lis force. That is, the advection field is calculated by 
solving the linearized pressure field and velocity equa
tions df /dt  = 0, dvu/dt = 0, dvv/dt = 0 across the 
faces of each Ecospace grid (u, v) cell, where f  is sea 
surface anomaly, the v’s are horizontal and velocity 
components {u, v directions) and the rate equations at 
each cell face satisfy (omitting grid size scaling fac
tors for clarity) :

dt’H c x / i  , ,
—— =  k x Wu -  k x vu -  ƒ  x vv ------------------(26)
aí u

d Uw g x h , .
— —  =  k x Wy -  k x V y  -  ƒ  x vu --------------------------------------------(27)
d i v

Here, the Ws  represent the user sketched forcing or 
general circulation field, h the sea surface anomaly, k 
the bottom friction force, /the Coriolis force, D repre
sents downwelling/upwelling rate, and g  acceleration 
due to sea surface slope.

Solving these equations for equilibrium is not meant 
to be a replacement for more elaborate advection mod
els; generally the Wu and Wv need to be provided either 
by such models or by direct analysis of surface current 
data, so the Ecospace solution scheme is only used to 
assure mass balance and correct for ‘local’ features 
caused by bottom topography and Coriolis forces. That 
is, absent shoreline, bottom, and sea surface anomaly 
(/) effects, the equilibrium velocities are just vu = Wu, 
Vy = Wy up to corrections for Coriolis force. Solv
ing the equations using general forcing sketches of W 
patterns allows internal correction for factors such as 
topographic steering of currents near shorelines, with
out requiring entered W fields that precisely maintain 
mass balance (and/or correct upwelling/downwelling 
velocities) absent any correction scheme.

Once an advection pattern has been defined, a 
user can specify which biomass pools are subject
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to the advection velocities (vu, vv field) in addition 
to movement caused by swimming and/or turbulent 
mixing. This allows examination of whether some 
apparent ‘migration’ and concentration patterns of 
actively swimming organisms (e.g. tuna aggregations 
at convergence zones) might in fact be due mainly to 
random swimming combined with advective drift.

4.5. Seasonal migration

Larger organisms commonly have seasonal mi
gration patterns that allow them to utilize favorable 
seasonal resource and environmental conditions over 
large spatial areas. Such movements can be repre
sented in Ecospace through a ‘Eulerian’ approach 
involving explicitly modeling changes in instanta
neous rates of biomass flow among the Ecospace 
spatial cells, in some way that approximates at least 
the changing center of distribution of the migratory 
species. The approach is implemented by defining a 
monthly sequence of ‘preferred’ map cell positions, 
and how spread out the migrating fish are likely to be 
around these preferred cells by specifying north-south 
and east-west ‘concentration parameters’.

The mathematical method used in Ecospace to cre
ate migratory behavior is quite simple. Spatial move
ment is represented in general in Ecospace as a set 
of instantaneous exchange rates across the boundaries

2
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Fig. 4. Representation of the relative movement rate across the 
southern boundary of a cell as a function of gradient steepness 
in the seasonal migration module of Ecospace. The function is 
reversed for movement across the northern cell boundary, and 
a similar function is used for east-west movements with map 
column-preferred column as the independent variable.
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of adjacent spatial cells. For migratory species, these 
exchange rates are multiplied by relative factors at 
each simulation time step, where the factors depend 
on distance from the preferred cell for that time step as 
shown in Fig. 4. The factor has no effect for cells near 
the preferred cell, and ‘shuts down’ movement away 
from the preferred cell for cells far from that preferred 
cell. The base movement rates that are multiplied by 
the migration factors may not be the same in all direc
tions to start with; these base rates can include advec
tion effects and/or increased/oriented movement rates 
towards preferred habitat types. That is, migration ef
fects can be combined with advection and orientation 
of movement toward preferred habitats.

5. Capabilities and limitations

EwE has been developed largely through case stud
ies, where users have challenged us to add various 
capabilities and as we have seen inadequacies through 
comparison to data; see as a good example the discus
sions in the proceedings from two recent FAO/UBC 
workshops on the application of EwE (Pauly and 
Weingartner, 1998; Pitcher and Cochrane, 2002). Var
ious capabilities have been added to EwE in response 
to these challenges, and there has inevitably been 
some uncertainty about what the approach and soft
ware presently can and cannot do, and about how it 
should be used in the design of sustainable fisheries 
policies. Such uncertainty may be expressed through 
too simplistic interpretations of what mass balance 
and biomass dynamics models are capable of repre
senting, through to unwarranted optimism about how 
it should be used to replace or complement existing 
assessment tools. Here we review the capabilities 
and limitations through a series of ‘frequently asked 
questions’, followed by explanations of what we think 
EwE is actually capable of doing.

Note that many of the questions discussed below 
have their root in an assumption that EwE is some
how intended to supplant or replace single-species 
assessment methods. This is clearly not the case; 
ecosystem-based methods rely on information from 
traditional assessment, and have their force when 
it comes to addressing strategic management ques
tions, not tactical management questions to which 
single-species assessment is much better suited. Our
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primary goal when developing EwE has been to de
velop a capability for asking policy questions that 
simply cannot be addressed with single-species as
sessment. Examples are questions about impacts of 
fishing on non-target species, and the efficacy of pol
icy interventions aimed at limiting unintended side 
effects of fishing. Also, as is shown through exam
ples below, EwE can incorporate time series data 
from single-species assessment as input and use these 
for parameter fitting. We indeed advocate an iter
ative process where information is passed between 
single-species analysis and EwE to check and improve 
estimates in the process, addressing questions about 
the degree to which ecosystem events can and cannot 
be attributed to impact of fisheries, climate change, etc.

5.1. Does Ecopath assume steady state or 
equilibrium conditions?

Ecopath provides an ‘instantaneous’ estimate of 
biomasses, trophic flows, and instantaneous mortality 
rates, for some reference year or multi-year averaging 
window. Biomasses need not be at equilibrium for the 
reference year, provided the Ecopath user can provide 
an estimate of the rate of biomass ‘accumulation’ (or 
depletion) for each biomass for that reference year. In 
fact, in a number of cases, e.g. in a model of the North 
Sea in 1981 (Christensen, 1995b) it was necessary 
to recognize that biomasses were in fact changing 
over the period for which Ecopath reference data (B, 
PIB, QIB, diet composition) were provided. In these 
cases, assuming equilibrium for the reference year led 
to overly optimistic estimates of sustainable fishing 
mortality rates.

5.2. Should Ecopath be used even i f  there is 
insufficient local information to construct models, or 
should more sampling go fírst?

It is a fairly common conception that since we do 
not know enough to make perfect models at the indi
vidual or species level there is no way we can have 
enough information at hand to embark on modeling 
at the ecosystem level. This may hold if we try to 
construct models bottom-up—we cannot account for 
all the actions and processes involving all the indi
viduals of the world. This is, however, not what Eco
path models do, instead they place piecemeal infor

mation in a framework that enables evaluation of the 
compatibility of the information at hand, gaining in
sights in the process. Adding to this is that there is 
much more information of living marine resources 
available than most will anticipate. A good demon
stration of this can be obtained by searching the Fish- 
Base database on finfish (Froese and Pauly, 2000, 
http://www.fishbase.org) for Ecopath-relevant infor
mation using the semi-automated search routine avail
able for the specific purpose at the website.

Another aspect is that ecosystem models can help 
direct research by pinpointing critical information and 
gaps in the present knowledge. As more information 
becomes available it is straightforwardly included in 
the model, improving estimates and reducing uncer
tainty (see ‘Addressing uncertainty’ above).

5.3. Does EwE ignore inherent uncertainty in 
assembling complex and usually fragmentary 
trophic data?

Ecopath has a number of routines that encourage 
users to explore the effects of uncertainty in input in
formation on the mass balance estimates. In particular, 
the ‘Ecoranger’ routine allows users to calculate prob
ability distributions for the estimates when they spec
ify probability distributions for the input data compo
nents. Similarly, Ecosim has a graphical interface that 
encourages policy ‘gaming’ and sensitivity testing.

Lack of historical data and difficulty in measuring 
some ecosystem components and processes will likely 
always plague efforts to understand trophic structure 
and interactions. This is not a problem with Ecopath, 
but rather with aquatic ecology in general (Ludwig 
et al., 1993). We need to respond to it not by complain
ing about the incompleteness of our data, but rather 
by using models like EwE to direct research attention 
toward components that are most uncertain and also 
make the most difference to policy predictions. We 
also need to use the models to search for robust policy 
options and management approaches that will allow 
us to cope with the uncertainty, rather than pretending 
that someday it will just go away.

When EwE is used for policy comparison, it is im
portant to recognize that incorrect comparisons (EwE 
leading user to favor a wrong policy) are not due to 
uncertainty in general about the model parameters, but 
rather to errors to which the particular policy compar

http://www.fishbase.org
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ison is sensitive. In other words, EwE can give correct 
answers for some policy comparisons but wildly in
correct ones for others, so it is meaningless to claim 
that it should not be used because of uncertainty in 
general. For example, EwE predictions of the impact 
of increasing fishing rates for a particular species are 
most sensitive to assumptions about vulnerability of 
prey to that species, since the vulnerability parameters 
largely determine the strength of the compensatory re
sponse by the species to increased mortality rate. But 
even if EwE predicts the strength of the compensatory 
response to fishing correctly, it may still fail to pre
dict response of that same species to a policy aimed at 
increasing its productivity by reducing abundance of 
one or more of its predators: EwE may have a good 
estimate of total mortality rate for the species, but a 
very poor estimate of how that mortality rate is dis
tributed among (or generated by) predators included 
in the model.

5.4. Can Ecopath mass balance assessments provide 
information directly usable for policy analysis?

Instantaneous snapshots of biomass, flows, and rates 
of biomass change have sometimes been used to draw 
inferences about issues such as ecosystem ‘health’ 
as measured by mean trophic level or other indices 
of fishing impact (e.g. Christensen, 1995a; Pauly and 
Christensen, 1995; Pauly et al., 1998). But the snap
shots cannot be used directly to assess effects of pol
icy changes that would result in changes in rates (e.g. 
reduction in fishing rates) since the cumulative effects 
of such changes cannot be anticipated from the system 
state at one point in time. In fact the Ecosim part of 
EwE was initially developed specifically to provide a 
method for predicting cumulative changes, while rec
ognizing that all rate processes in an ecosystem may 
change over time, as biomasses change. For example, 
one might conclude from the Ecopath mortality rate 
estimates or mixed trophic impact analysis (see above) 
that reducing the abundance of some particularly im
portant predator might result in lower mortality rates 
of its prey, and hence growth in abundance of these 
prey. This prediction may hold for a short time, but 
might be reversed entirely over longer time scales due 
to increases in abundance of other predators or on an 
intermediate time scale due to predator prey switching 
in response to the initial responses in prey density.

5.5. Can Ecopath provide a reliable way o f estimating 
potential production by incorporating knowledge o f 
ecosystem support capabilities and limits?

Ecologists have long sought simple ways of pre
dicting productive potential of aquatic ecosystems 
from ‘bottom-up’ arguments about efficiency of 
conversion of primary production into production 
of higher trophic levels (e.g. Polovina and Marten, 
1982). While Ecopath inputs can be organized so as 
to provide such predictions, we do not recommend 
using EwE for management this way. There are sim
ply too many ways that simple efficiency predictions 
can go wrong, particularly in relation to ‘shunting’ of 
production into food web components that are not of 
direct interest or value in management (e.g. ungraze- 
able algae, inedible Zooplankton, etc.) Ecopath can 
help provide broad bounds for potential abundances 
and production in an exploratory research mode, but 
these bounds are unlikely to be tight enough to be 
useful for management planning related to fishery 
development or recovery potential.

5.6. Can Ecopath predict biomasses o f groups for 
which no information is available?

We try to avoid using the Ecopath biomass esti
mation capability for more biomass components than 
absolutely necessary. Estimation of biomass with 
Ecopath usually requires making explicit assumption 
about the ecotrophic efficiency, i.e. about the pro
portion of the total mortality rate of a group that we 
account for by the predation, migration, biomass ac
cumulation and fishing rates included explicitly in the 
Ecopath data. There is rarely a sound empirical basis 
for using any particular value of EE, except perhaps 
for top predators in situations where total mortality 
rate (Z =  PIB) is well estimated and EE represents 
a ‘known’ ratio of fishing rate (F) to total Z  (and the 
rest of Z, e.g. the natural mortality (M) is known not 
to be due to other predators included in the model nor 
to other factors not considered).

Where biomasses really are unavailable or esti
mates are known to be biased, e.g. if the only biomass 
estimates for pelagios are from swept-area analysis 
based on demersal trawling, it may still be better to 
use assumed EE’s than to stop short of construct
ing an ecosystem model pending, e.g. funding and
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development of capabilities to conduct acoustic sur
veys. In such cases one can assume reasonable EE 
values for groups where biomasses are missing—an 
example: small pelagios do not die of old age in an 
exploited ecosystems, most are either eaten or caught, 
hence EE is likely to be in the range 0.90-0.99. 
As confidence intervals can be assigned to all input 
parameters and can be estimated for the output pa
rameters using the Ecoranger module of EwE (where 
a range for acceptable output parameters is also in
corporated as part of the model evaluation process), 
the mass balance constraints of the model can be 
used to predict potential ranges for biomasses in the 
system.

5.7. Should Ecopatii mass balance modeling be used 
only in situations where data are inadequate to use 
more detailed and realistic methods like MSVPA?

Multispecies virtual population analysis (MSVPA) 
has been used to reconstruct age-size and time-depen
dent estimates of trophic flows and mortality rate 
components, using the VPA assumption that historical 
abundances can be inferred by back-calculating how 
many organisms must have been present in order to ac
count for measured and estimated removals from those 
organisms over time (e.g. Sparre, 1991: Magnusson, 
1995). In a sense, Ecopath does this as well, but 
generally does not account for age-size dependency 
and temporal variation (biomasses are constrained 
to be large enough to account for assumed removals 
estimated from biomasses, consumption/biomasses, 
and diet composition of predators, just as in 
MSVPA).

But the really big difference between Ecopath and 
MSVPA is not in the detail of calculations: construct
ing an Ecopath model that details age, size and time 
components is tedious but feasible. The more impor
tant difference is in the use of direct data on total 
mortality rate by Ecopath, in the form of the PIB ra
tio that Ecopath users must provide. Ecopath biomass 
and mortality estimates are ‘constrained’ to fit the to
tal mortality rates entered as PIB data. In contrast, 
MSVPA (like single-species VPA) can produce cohort 
abundance patterns (die-off patterns over age-size and 
time) that do not agree in any way with apparent co
hort decay patterns evident from direct examination of 
the age-size composition data. In effect, the MSVPA

(and VPA) user must reject or ignore any direct evi
dence about total mortality rate Zthat might be present 
in age-size composition data, and must treat discrep
ancies between apparent Zfrom the cohort reconstruc
tions versus apparent Z  from composition data as be
ing due to age-size-dependent changes in vulnerability 
to the composition sampling method. As an example, 
Newfoundland cod VPA’s resulted in much lower es
timates of Zthan would be estimated from catch-curve 
analysis of the age composition data, and in this case 
it turned out that VPA tuning resulted in underesti
mates of fishing mortality rate, see, e.g. Walters and 
Maguire (1996).

It is obviously comforting to us as biologists to be 
able to provide more detailed accounting of preda
tion interactions, which are almost always size and 
age-dependent. But in assessments of ecosystem-scale 
impacts of changes in trophic conditions, it is not au
tomatically true that the best aggregate estimate is the 
sum of component estimates, any more than it is auto
matically true in single-species assessment that more 
detailed models and data always provide better assess
ments than simpler models. For statistical and logical 
reasons, the ‘more is better’ argument is no more valid 
in dynamic modeling than it is in multiple regression 
analysis, where we are familiar with how adding more 
independent variables is often an invitation to better 
fits but poorer predictions.

As noted in the following two points, Ecopath and 
Ecosim do not ‘ignore’ the fact that trophic interac
tions are strongly age-size and seasonally structured. 
Rather, we assume that initial (Ecopath base or ref
erence period) structuring has been adequately cap
tured in preparing average/total rate input data, and 
that changes in structural composition over time are 
not large enough to drastically and persistently al
ter interaction rates/parameters. This is very similar 
to the assumption in single-species biomass dynam
ics and delay-difference modeling that stock compo
sition changes produce regular or predictable changes 
in overall (stock-scale) production parameters, not that 
there is no composition effect in the first place.

5.8. Do EwE models ignore seasonality in 
production, mortality, and diet composition?

In most applications, Ecopath calculates compo
nents of biomass change over a 1-year accounting
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step. There is no explicit assumption about how mor
tality rates, consumption rates, and diet composition 
may have varied within this step, except that the Eco
path user is assumed to have calculated a correct, 
weighted average of the rates over whatever seasonal
ity may have been present in the data. Such averages 
can be difficult to calculate in practice, and a program 
interface component has been developed to help users 
with this chore (Marteli, 1999).

In Ecosim, model users can define seasonal ‘forc
ing shapes’ or functions that can be applied as sea
sonal multipliers to the modeled production and con
sumption rate functions. Generally, including seasonal 
variation in this way results in graphics displays that 
are hard to follow visually (strong seasonal oscilla
tions in ecosystem ‘fast’ variables like phytoplankton 
concentration), but very little impact on predicted in
ter annual (cumulative, long term) patterns of system 
change.

5.9. Do biomass dynamics models like Ecosim treat 
ecosystems as consisting o f homogeneous biomass 
pools o f identical organisms, hence ignoring, e.g. 
size-selectivity o f predation ?

The biomass rate equations in Ecosim (sums of con
sumption rates less predation and fishing rates) can be 
viewed as ‘sums of sums’, where each trophic flow 
rate for an overall biomass pool is the sum of rates 
that apply to biomass components within that pool. In 
this view, doing a single overall rate calculation for a 
pool amounts to assuming that the proportional con
tributions of the biomass components within the pool 
remain stable, i.e. the age-size-species composition 
of the pool remains stable over changes in predicted 
overall food consumption and predation rates. In fact, 
the assumption is even weaker: pool composition may 
indeed change over time provided that high and low 
rate components change so as to balance one another 
or proportional contribution of major components is 
stable enough so that total rates per overall biomass 
are not strongly affected.

We know of at least one condition under which 
the compositional stability assumption may be 
violated—when ratios of juvenile to adult abundance 
can change greatly (e.g. under changes in fishing mor
tality) for a species that has strong trophic ontogeny 
(very different habitat use and trophic interactions

131

by juveniles). To deal with such situations, Ecosim 
allows model users to ‘split’ biomass pools repre
senting single-species with strong trophic ontogeny, 
into ‘juvenile’ and ‘adult’ pools (or if desired in 
to multiple stanza). If so, the Ecosim biomass dy
namics equations are replaced with an explicit age 
structured model for monthly age cohorts in the ju 
venile pool, and a delay-difference model for the 
adult pool. That is, for ‘split pool’ species Ecosim 
replaces the biomass dynamics model with a much 
more detailed and realistic population model (see 
Section 3.2 above). This allows Ecosim users to 
not only represent compositional effects, but also 
to examine the emergent stock-recruitment relation
ship caused by density-dependent changes in adult 
fecundity and juvenile growth and foraging time 
behavior.

5.10. Do ecosystem biomass models ignore 
behavioral mechanisms by treating species 
interactions as random encounters?

Historically, trophic interaction rates in biomass 
dynamics models have been predicted by treating 
predator-prey encounter patterns as analogous to 
‘mass-action’ encounters between chemical species 
in chemical reaction vat processes, where reaction 
(encounter, ‘predation’) rates are proportional to 
the product of predator and prey densities. Such 
‘Lotka-Volterra’ models generally predict much 
more violent dynamic changes, and considerably 
simpler ecosystem organization, than we see in field 
data.

Ecosim was constructed around the proposition that 
this mass-action principle is deeply incorrect for eco
logical interactions, and instead interactions take place 
largely in spatially and temporally restricted ‘forag
ing arenas’ where prey make themselves available to 
predation through activities such as foraging and dis
persal. To represent this within-pool heterogeneity, we 
treat each biomass pool as consisting at any instant of 
two biomass components with respect to any predator, 
one sub-pool of individuals vulnerable to the preda
tor and another sub-pool ‘safe’ from the predator. In 
this view, predation rate is limited jointly by search 
efficiency of the predator for vulnerable prey individ
uals, and exchange rate of prey between the invulner
able and vulnerable states. When Ecosim users set the
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vulnerability exchange rates to high values, the model 
moves toward ‘top-down’ or mass-action control of 
predation rates. When users set the vulnerability rates 
to low values, the model moves toward ‘bottom-up’ 
control where predation rates are limited by how fast 
prey move (or grow, or disperse) into the vulnerable 
state.

Obviously the two-state (vulnerable/invulnerable) 
representation of prey biomass composition is a first 
approximation to the much more complex distribution 
of vulnerabilities among prey individuals that is likely 
to be present in most field situations. But it goes a 
remarkable way toward explaining dynamic patterns 
(lack of predator-prey cycles, persistence of appar
ent competitors and high biodiversity) that we have 
been unable to explain with simpler Lotka-Volterra 
mass-action models.

5.11. Do Ecosim models account for changes in 
trophic interactions associated with changes in 
predator diet compositions and limits to predation 
such as satiation?

In nature, diet compositions and feeding rates can 
change due to five broad factors:

(1) changes in ‘habitat factors’ such as water clarity, 
temperature, and escape cover for prey;

(2) changes in prey abundance and activity, and hence 
encounter rates with predators;

(3) changes in predator abundance, and hence in
terference/exploitation competition for localized 
available prey;

(4) changes in predator search tactics (search images, 
microhabitat used for foraging) ;

(5) handling time or satiation limitations to predator 
feeding rates.

Ecosim allows (or requires) representation of four 
of these factors, namely all but predator search tac
tic changes (4). Type (1) factors can be optionally 
introduced by including ‘time forcing’ functions rep
resenting temporal habitat change, and or ‘trophic 
mediation’ functions where other biomasses mod
ify predation interaction rates for any predator-prey 
pair(s). Types (2), (3), and (5) are built into the cal
culations by default (though some effects can be 
switched off through parameter choices).

In Ecosim, changes in prey abundance (factor (2) 
above) lead to proportional changes in predator diet 
composition only when prey feeding times are delib
erately held constant by ‘turning off’ Ecosim forag
ing time adjustment parameters. When prey foraging 
time is allowed to vary (default assumption), declines 
in prey density generally result in apparent sigmoid 
(type (3)) decreases in predator consumptions of that 
prey type: as the prey declines, it generally spends less 
time feeding (reduced intraspecific competition for its 
own prey) and hence reduced encounter rates with its 
predators. The user can exaggerate this sigmoid effect 
by turning on parameters that cause the prey to spend 
less time feeding when predation risk is high (i.e. di
rect response to perceived predation risk).

Predator satiation effects are represented in Ecosim 
by foraging time adjustments such that predators ‘try’ 
to maintain constant food consumption rates (unless 
foraging time adjustments are switched off), by spend
ing more time feeding when feeding rates begin to de
crease due to decreasing densities of one or more prey 
types. Likewise, handling time limits to feeding rate 
(lower attack rate on any one prey type as abundance 
of another increases, due to predator spending more 
time pursuing/handling individuals of the other type) 
are represented by a ‘multispecies disc equation’ (gen
eralization of Holling’s Type II functional response 
model).

Ecosim, for regions of parameter space with fairly 
slow dynamics, offers a reasonable approximation of 
most types of studied functional response forms. It is 
possible, as in all functional responses that the shape 
of the curves as evidenced in Ecosim departs sub
stantially from the actual mechanisms which give rise 
to those shapes in nature. Further, good fits to one 
type of data (e.g. biomass) may hide poor fits to other 
types (e.g. capture inappropriate changes in feeding 
rate).

Our philosophy in developing Ecosim predation rate 
predictions has been to look first at the fine-scale 
(space, time) behavioral ecology of prey and preda
tors, and in particular at how they vary and ‘manage’ 
their time. Overall predation response patterns, such as 
Type II sigmoid effects of reduced prey density, then 
‘emerge’ as effects of the time management represen
tation rather than being ‘hardwired’ into the model 
by particular overall equations for predation rates and 
diet composition.
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5.12. Are the population models embedded in 
Ecosim better than single-species models since tiiey 
explain the ecosystem trophic basis for production?

In a number of case studies, Ecosim users have 
treated the model as though it were a single-species 
assessment tool, varying its parameters so as to fit 
time series data for a particular species (e.g. Cox 
et al., 2002). In such cases, it generally turns out that 
the biomass dynamics or delay-difference ‘submodel’ 
for the target species behaves quite similarly when 
‘embedded’ in Ecosim (with explicit accounting 
for production and mortality rate as function of 
food resources and predators) to the corresponding 
single-species assessment model where competition 
effects are represented as implicit functions of stock 
size (e.g. stock-recruitment model) and predation 
mortality rates are assumed constant.

So if one has an Ecosim model whose ‘production’ 
parameters have been estimated by fitting the 
model to single-species data, and a corresponding 
single-species model also fitted to the data, one 
should not be surprised that the two approaches usu
ally give about the same answers to policy questions 
related to changing fishing mortality rate for the 
species (e.g. fishing rates for MSY). Ecosim models 
may diverge from the single-species predictions at 
very low stock sizes (Ecosim may predict ‘delayed 
depensation’ effects due to changes in predation rates 
on juveniles), but otherwise do not generally lead 
us to interpret the single-species data any differ
ently with respect to single-species assessment issues 
(e.g. MSY) than if we just used the single-species 
model.

Thus, it would be wrong when applying Ecosim for 
single-species harvest policy analysis to contend that 
Ecosim is ‘better’ than a single-species model, when 
both give the same answer. It may comfort us to know 
as biologists that the Ecosim representation has some
how explained production in terms of ecosystem re
lationships rather than implicit relationships on stock 
size, but making biologists ‘feei better’ should not be 
a criterion for judging the effectiveness of a policy 
tool. When fitting Ecosim to the data we encounter 
the same risks as in single-species assessment of in
correct biomass estimation, misinterpretation of trend 
data (e.g. hyperstability of catch per effort data), and 
failure to account for persistent effects such as en

vironmental regime changes or confounding of these 
effects with the effects of fishing.

5.13. Do Ecosim population models provide more 
accurate stock assessments than single-species 
models by accounting for changes in recruitment and 
natural mortality rates due to changes in predation 
rates?

As noted above, using Ecosim for single-species 
assessments usually results in similar fits to historical 
data as would be obtained with traditional surplus 
production or delay-difference models. In principle 
Ecosim should be able to improve a bit on models 
that assume stationary stock-recruitment relation
ships and constant natural mortality rates, at least 
for mid-trophic level species that may be subject to 
highly variable predation risk. But in practice we have 
so far not obtained substantial improvements in fit to 
data, which could be due to poor data or to stability 
in mortality rates of the sort predicted when Ecosim 
vulnerability parameters are set to mimic ‘bottom-up’ 
control of predation rates.

In one case where we have fit Ecosim to multiple 
time series data on major species (herring, salmon, 
hake, ling cod, seals) by estimating ‘shared produc
tion anomalies’ attributed in the fitting to changes in 
primary productivity, we were able to show that about 
half the total variance around single-species model fits 
to changes in relative abundance over time could be 
explained by ecosystem-scale effects (Marteli et al., 
2002). That is, we were able to ‘improve’ on the 
single-species fitting, but this improvement was due to 
assuming changes in ecosystem scale ‘forcing’ rather 
than to accounting for temporal variation in preda
tion mortality rates associated with impacts of fishing 
on predators. In another case (French Frigate Shoals, 
Hawaii) we were again able to fit time series data 
(rock lobsters, monk seals) better by including ef
fects of an ecosystem-scale regime shift (decreased 
primary production in the Central North Pacific after 
1990), and were not able to explain deviations from 
single-species model fits through changes in trophic 
interactions alone (Polovina, 2002).

These cases, along with experience that Ecosim 
generally does not behave much differently from 
single-species models when only fishing effects are 
considered, lead us to suspect that accounting for
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predator-prey effects by itself may not lead to substan
tial improvements in stock size prediction. However, 
there is a good chance that Ecosim will be very helpful 
in interpreting effects of large-scale, persistent regime 
changes that are likely to have caused ecosystem-scale 
changes in productivity. In such situations, Ecosim 
may be particularly helpful in finding some resolution 
for the so-called ‘Thompson-Burkenroad’ debates 
about the relative importance of fishing versus envi
ronmental changes in driving historical changes in 
abundance (Skud, 1975).

Rather than pretending that Ecosim and single
species methods are competitors, a useful assessment 
tactic may be to work back and forth between Ecosim 
and single-species assessment methods, using each to 
check and improve the other. For example, we have 
used ordinary VPA and stock synthesis results for 
Pacific herring as reference ‘data’ (summary of raw 
age composition, harvest, and spawn survey data) 
for fitting Ecosim models of the Georgia Strait. The 
Ecosim herring model predicts somewhat lower abun
dances than VPA during periods of low stock size, 
and somewhat higher abundances than VPA during 
high stock periods. Ecosim also estimates lower nat
ural mortality rates (M) for herring during the low 
abundance periods. If Ecosim is correct in estimating 
that M  has been (weakly) density-dependent, then 
VPA has probably overestimated abundance (used too 
high an M  in the VPA back calculation) during popu
lation lows, and is probably underestimating juvenile 
abundance now (due to using an M  that is too low for 
the current high stock size).

5.14. Can one rely on the Ecosim search procedure 
time series fítting to produce better parameter 
estimates?

Ecosim users are cautioned that the search proce
dure in no way guarantees finding ‘better’ Ecosim pa
rameter estimates. Better fits to data can easily be ob
tained for the wrong reasons, e.g. some time series, 
particularly catch/effort data, can be misleading in the 
first place, as can historical estimates of changes in 
fishing mortality rates. Many parameter combinations 
may equally well ‘explain’ patterns in the data. Non
linear search procedures can become lost or ‘trapped’ 
at local parameter combinations where there are local 
minima in the SS function far from the combinations

that would actually fit the data best. The best way to 
insure against the technical problems of searching a 
complex SS function is to use ‘multiple shooting’ : start 
the search from a variety of initial parameter combi
nations, and see if it keeps coming back to the same 
final estimates. Look very closely at the time series 
data for possible violations of the assumption that the 
relative abundance, y, is a product of a scaling fac
tor and the total biomass, due to progressive changes 
in the methods of y  or by nonlinearities caused by 
factors such as density-dependent catchability. If y  is 
a biomass reconstruction from methods such as VPA 
that assume constant natural mortality rate Aí, spuri
ous trends in y  caused by the sort of changes in M  that 
Ecosim predicts, particularly for younger animals, call 
for concern. Alternative combinations of Ecosim pa
rameters may fit the data equally well but would im
ply quite different responses to policy changes such 
as increases in fishing rates.

Search procedures are most useful in diagnosing 
problems with both the model and data. That is, the 
greatest value of doing some formal estimation is 
while it seems not to be working, when it cannot find 
good fits to data. Poor fits can be informative about 
both the model and the data.

5.15. Does Ecosim ignore multispecies technical 
interactions (selectivity or lack o f it by gear types) 
and dynamics created by bycatch discarding?

By separating groups into juveniles and adults, each 
with different biomasses and catches (and hence fish
ing mortalities), fundamental differences in selection 
can be accounted for. Moreover, Ecosim users can 
specify fishing mortality patterns over time either at 
the group level (fishing rate for each group over time) 
or the fleet level. Fleet level changes are specified as 
changes in relative fishing effort (relative to the Eco- 
path baseline model), and these changes impact fish
ing rates for the species caught by each gear in propor
tion to Ecopath base estimates for the species compo
sition of the gear. That is, technical interactions (fish
ing rate effects on a variety of species caused by each 
gear type) are a basic part of the Ecopath data input 
and Ecosim simulations. However, Ecosim does not 
provide simple scenario development options for sim
ulating tactics that dynamically might make each gear 
more or less selective.
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Discarded bycatch can be treated as a biomass pool 
in Ecopath, i.e. as a diet component (and hence com
ponent of production) by species that consume dis
cards (e.g. sharks, birds, shrimp). Ecopath input data 
on bycatch and discard rates are passed to Ecosim, and 
Ecosim does time accounting for changes in discard 
rates and biomass in relation to simulated changes in 
fishing fleet sizes. In scenarios where some species 
are heavily dependent on bycatch, Ecosim will then 
track impacts of bycatch management on food avail
ability and feeding rates of such species. For instance, 
Ecosim has produced some very interesting scenarios 
for shrimp fishery development and how shrimp of
ten appear to become more productive under fishing, 
by including effects of both reducing abundance of 
predatory fishes (when they are killed as bycatch) and 
providing biomass from those fishes as food for the 
shrimp.

5.16. Does Ecosim ignore depensatory changes in 
físhing mortality rates due to range collapse at low 
stock sizes?

Ecosim users have two options for specifying fish
ing mortality rate patterns: (1) direct entry of fish
ing rate (F) values over time; or (2) entry of rela
tive fishing effort values over time, with fishing rate 
calculated as q(B) x (relative effort), where q{B) is a 
biomass-dependent catchability coefficient. Under the 
second option, q is modeled as a hyperbolic function 
of B (q = <7max/(l +  kB)), so that q can be increased 
dramatically with decreases in stock size. The concept 
in this formulation is to recognize that catchability q 
can be expressed as a ratio q = a!A, where a is the 
area swept by one unit of effort and A is the area over 
which fish are distributed. Increases in g with decreas
ing stock biomass are usually assumed to be caused 
by decreases in stock area A occupied with decreases 
in B.

5.17. Does Ecosim ignore the risk o f depensatory 
recruitment changes at low stock sizes?

Depensatory recruitment changes are apparently not 
common (Myers et al., 1995; Liermann and Hilborn, 
1997), but should not be ignored in risk assessments 
for situations where a depensatory recruitment decline 
would have large economic or social consequences.

Depensatory effects are usually assumed to be due 
to Type II predator feeding effects, where predators 
would exert an increasing mortality rate on juvenile 
fishes if they tend eat a constant number of juveniles 
despite decreasing juvenile density. There are rela
tively few field situations where we would expect such 
Type II predator feeding effects (like migrating pink 
salmon fry being eaten by resident trout in a small 
stream).

Ecosim has helped identify another possible depen- 
sation mechanism that may be more common, which 
we call the ‘delayed depensation’ or ‘cultivation- 
depensation’ effect (Walters and Kitchell, 2001). 
When a large, dominant species is fished down, 
Ecosim often predicts a substantial increase in 
smaller-sized predators that have been kept down in 
abundance by a combination of direct predation and 
competition effects with the large dominant species. 
These predators then cause an increase in predation 
mortality rate on (or compete for food with) juveniles 
of the large, previously dominant group. This causes 
a depensatory decrease in the recruitment rate per 
spawner for the large dominant, slowing or prevent
ing population recovery even if the fishing effects 
are removed. Thus, far from ignoring depensatory re
cruitment effects, Ecosim warns us to be more careful 
about the risk of these effects. It warns us to be espe
cially wary in the management of the most common, 
large, and dominant fish species that are the most 
valuable components of most fisheries.

6. Major pitfalls in the application of EwE

EwE can produce misleading predictions about even 
the direction of impacts of policy proposals. Erroneous 
predictions usually result from bad estimates or er
rors of omission for a few key parameters, rather than 
‘diffuse’ effects of uncertainties in all the input infor
mation. We warn EwE users to be particularly care
ful about the following problems that we have seen in 
various case studies.

6.1. Incorrect assessments o f predation impacts for 
prey that are rare in predator diets

It is easy to overlook a minor diet item in specifying 
diet composition for some predator. Unfortunately,
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while that prey type may not be important for the 
predator, it may represent a very large component of 
total mortality for the prey type. This is a particu
larly important problem in representation of mortality 
factors for juvenile fishes, which usually suffer high 
predation mortality rates but are often not major 
components of any particular predator’s diet and are 
notoriously difficult to measure in diet studies (fast 
digestion rates, highly erratic and usually seasonal 
occurrence in predator diets).

Another way that ‘minor’ diet items can come 
to assume considerable importance is through 
‘cultivation-depensation’ effects (Walters and Kitchell, 
2001) as discussed above. Suppose for example that 
some small predatory fish is kept at low densities by 
another, larger predator, but the number of predation 
events needed to exert this control is small compared 
to the total prey consumption by the larger preda
tor. It would be easy to miss this linkage entirely in 
formulating the initial Ecopath model. But then sup
pose the larger predator is fished down, ‘releasing’ 
the smaller predator to increase greatly in abundance. 
The smaller predator may then cause substantial de
crease in juvenile survival rates of the larger predator, 
creating a ‘delayed depensation’ effect on the larger 
predator’s recruitment. Possibly the larger predator 
was abundant in the first place at least partly because 
it was able to exert such control effects on preda
tors/competitors of its own juveniles. Even if such 
‘perverse’ trophic interactions are rare, they are cer
tainly worth worrying about because they imply a 
risk that overfishing will result in delayed recovery 
or a persistent low equilibrium abundance for larger 
predators.

6.2. Trophic mediation effects (indirect trophic 
effects)

We use the term ‘mediation effect’ for situations 
where the predation interaction between two biomass 
pools is impacted positively or negatively by abun
dance of a third biomass type. For example, predation 
rates on juvenile fishes by large piscivores may be 
much lower in situations where benthic algae, corals, 
or macroinvertebrates provide cover for the juveniles. 
Pelagic birds like albatrosses that feed on small fishes 
may depend on large piscivores to drive these small 
fishes to the surface where they are accessible to the

birds. Some large piscivores may create enough pre
dation risk for others to prevent those others from for
aging on some prey types in some habitats.

When a mediation effect is in fact present but is 
not recognized in the Ecosim model development, it 
is not unlikely for the model to predict responses that 
are qualitatively incorrect. For example, fishing down 
tunas in a model of a pelagic ecosystem is likely to 
result in predicted increases in abundance of forage 
fishes, and hence to predicted increases in abundance 
of pelagic birds. But in fact, reducing tuna abundance 
may have exactly the opposite effect, resulting in bird 
declines due to the baitfish spending less time at the 
surface when tuna are less abundant.

6.3. Underestimates o f predation vulnerabilities

Predation impacts can be limited in Ecosim by 
assuming low values of the exchange parameters 
( v ’s) between behaviorally invulnerable and vulnera
ble prey ‘states’. We call these exchange parameters 
‘vulnerabilities’, and they are estimated by assuming 
ratios of maximum to Ecopath base estimates of prey 
mortality rates for each predator-prey linkage. That 
is, if M(o) i j  =  Q(o ) i j /B (o ) i  is the base instantaneous 
natural mortality rate for prey type i caused by preda
tor Jbase (Ecopath estimate) consumption rate Q{o), j  
on prey base biomass B{o)j,  we assume that the maxi
mum possible rate for very high predator j  abundance 
would be Vjj x Bj,  where vy = K  x M(o )y ,  K  > 1, 
represents the rate at which prey become vulnerable 
to predator j. By using a K  near 1, i.e. vy  only a 
little larger than M( o)y ,  Ecosim users can simulate 
the ‘bottom-up’ control possibility that changes in 
predator abundances do not cause much change in 
prey mortality rates because these rates are limited by 
physiological or behavioral factors of the prey. The 
assumption that there are such limitations is supported 
by scattered observations where total mortality rates 
(Z) were poorly correlated with changes in predator 
abundances.

Another way expressing that vulnerabilities of prey 
to predators are very limited is to say that predators 
are already eating almost every prey that does be
come vulnerable. If this is indeed true, then there is 
likely intense exploitation competition among preda
tors for the prey that do become vulnerable, i.e. the 
number of vulnerable prey seen by each predator is
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severely limited by the number of other predators com
peting for those prey. This has potentially large impli
cations for the dynamics of the predator: reductions in 
predator abundance may be accompanied by large in
creases in the densities of vulnerable prey available to 
each remaining predator. In such cases, Ecosim will 
predict a strong compensatory effect on the predator 
of reduced predator abundance (strong increases in 
food consumption rate and growth, or large decreases 
in predator foraging time with attendant decreases in 
mortality risk faced by the predator).

So the net effect of assuming low prey vulnerabil
ities is also to assume that predators should exhibit 
strong compensatory responses to reduced abundance 
of conspecifics, which in simulations of increased fish
ing pressure means strong compensatory responses 
and hence lower risk of overfishing. An enthusiastic 
proponent of ‘bottom-up’ control of trophic processes 
must therefore also be a strong proponent of the idea 
that it is hard to overfish. This is a very risky assump
tion.

6.4. Non-additivity in predation rates due to shared 
foraging arenas

The default assumption in Ecosim is to treat each 
predation rate linkage as occurring in a unique ‘for
aging arena’ defined by the behaviors of the specific 
prey and predator. In this formulation, elimination of 
one predator will result in a decrease in total prey 
mortality rate equal (at least initially) to the Ecopath 
base estimate of that predator’s component of the prey 
total mortality rate. This may be partly compensated 
by increases in mortality rate due to other predators 
if the prey increases in abundance and spends more 
time foraging in response to increased intraspecific 
competition, but in general this compensatory effect 
will not completely replace the initial mortality rate 
reduction.

But suppose this formulation is wrong, and in fact 
the mortality rate of the prey represents movement of 
the prey into behavioral or physiological states (e.g. 
parasite loads) for which it is vulnerable to predators 
in general. In this case, removal of any one predator 
may simply result in the vulnerable prey individuals 
being taken just as fast, but by other predators. In this 
case, the total mortality rate of the prey will change 
much less than predicted by Ecosim.

6.5. Temporal variation in species-specifíc habitat 
factors

Attempting to fit Ecosim models to time series data 
has revealed some cases where an important species 
or biomass pool shows dramatic change that cannot be 
attributed to any known change in trophic relationships 
or harvesting. Then this dramatic but ‘unpredictable’ 
change appears to result in major trophic impact on the 
rest of the ecosystem. An example would be a plank- 
tivorous fish species, which shows high recruitment 
variation and occasional very strong year classes. If 
this species is important to piscivores in the system, 
the piscivores may respond strongly to changes in the 
planktivores abundance. It is quite possible for such re
cruitment ‘events’ to be linked to very localized habi
tat factors that affect juvenile survival of the plank- 
tivore, so that each event results in a persistent cas
cade of abundance changes throughout the food web. 
Another example would be loss of specific spawning 
sites or habitat for one species that causes it to decline 
despite favorable trophic conditions in terms of food 
supply and predation risk.

Ecosim can help us detect possible habitat prob
lems, by revealing prediction ‘anomalies’ from 
biomass patterns expected under trophic and fishing 
effects alone. But there is also a risk of producing 
‘spurious’ good fits to Ecosim, when Ecosim parame
ters are varied so as to explain as much of the biomass 
change as possible; that is, Ecosim may explain pat
terns as trophic/fishing effects that in fact have been 
due to habitat changes. This is a particular risk in 
situations where habitat change involves some fairly 
regular ‘regime shifts’ or cycles in habitat variables. 
Ecosim may well attribute cyclic biomass changes in 
such situations to predator-prey instabilities rather 
than environmental forcing.
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