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In this paper we solve two initial value problems for two-dimensional internal gravity 
waves. The waves are contained in a uniformly stratified, square-shaped domain whose 
sidewalls are tilted with respect to the direction of gravity. We consider several 
disturbances of the initial stream function field and solve both for its free evolution 
and for its evolution under parametric excitation. We do this by developing a structure- 
preserving numerical method for internal gravity waves in a two-dimensional stratified 
fluid domain. We recall the linearized, inviscid Euler-Boussinesq model, identify its 
Hamiltonian structure, and derive a staggered finite difference scheme that preserves 
this structure. For the discretized model, the initial condition can be projected onto 
normal modes whose dynamics is described by independent harmonic oscillators. This 
fact is used to explain the persistence of various classes of wave attractors in a 
freely evolving (i.e. unforced) flow. Under parametric forcing, the discrete dynamics 
can likewise be decoupled into Mathieu equations. The most unstable resonant modes 
dominate the solution, forming wave attractors.
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1. Introduction
Internal gravity waves in uniformly stratified fluids retain their frequency and 

consequently also their angle with respect to gravity upon reflection from an inclined 
boundary. Waves do change their wavelength, and become focused or defocused when 
reflecting from plane, inclined surfaces. Laboratory experiments confirm that when a 
container filled with a uniformly stratified fluid is excited vertically or horizontally, 
internal gravity waves appear, which become focused when reflecting from a sloping 
wall and converge towards a limit cycle, a so-called wave attractor (Maas & Lam 
1995; Maas et al. 1997; Hazewinkel et al. 2008). Energy propagates along the 
straight lines of the attractor, which are normal to the direction of phase propagation. 
Understanding the behaviour of internal waves in bounded domains may be important 
for explaining the mixing processes in ocean basins and lakes, and has relevance to 
astrophysics and fluid dynamics in general (Biihler & Holmes-Cerfon 2011).

The ideal setting, considered above and used in typical laboratory and theoretical 
settings (including ours), assumes the fluid’s stratification to be uniform, the domain’s
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boundaries to be smooth and the setting to be two-dimensional. Non-uniform 
stratification, rough topography and three-dimensionality may, however, all lead to 
scattering of the internal wave field. Moreover, dissipation and nonlinear wave 
interaction limit the amplification of internal waves and might thus prohibit the 
ultimate localization of internal waves onto wave attractors.

Nevertheless, laboratory and numerical experiments have shown that wave attractors 
may be resilient to some of these perturbations. In the laboratory, attractors 
were shown to persist despite basins having non-uniform stratification, small-scale 
boundary corrugations (Hazewinkel et al. 2010) or being forced non-centrally in 
a three-dimensional (paraboloidal) domain (Hazewinkel, Grisouard & Dalziel 2011). 
Numerically, attractors were obtained using multi-purpose numerical codes in idealized 
two-dimensional trapezoidal domains (Grisouard, Staquet & Pairaud 2008), in three- 
dimensional parabolic channel domains (Drijfhout & Maas 2007) or in geometries 
mimicking realistically the Luzon Strait in the South China Sea (Tang & Peacock 
2010; Echeverri et al. 2011). Because of the interest in the dynamics of the Earth’s 
liquid outer core and of stellar interiors, special attention has been devoted to wave 
attractors in spherical shells, where they are relevant to tidal dissipation and where 
they are resolved using spectral codes (e.g. Dintrans, Rieutord & Valdettaro 1999; 
Tilgner 1999; Rieutord, Georgeot & Valdettaro 2000).

But the actual relevance of internal wave attractors to real lakes, seas, oceans, 
atmospheres, the Earth’s outer core, or planets and stars is unclear at present. 
Many factors may after all ‘dilute’ the ideal setting, and the evidence from direct 
observations is inconclusive or contradictory. Field observations in the small, 1 km 
wide stratified lake Mystic show that the horizontal velocity reaches its maximum at 
the sloping sides of the lake. This suggests that internal waves are steered towards 
a wave attractor instead of taking the shape of a seiche, a sloshing mode which 
would have its velocity maximum near the centre (Fricker & Nepf 2000). Earlier lake 
observations revealed the dominance of high-wavenumber vertical modes, indicative 
of the presence of the small scales associated with an attractor (LaZerte 1980). The 
non-uniform stratification and presence of sheared background currents, all affecting 
internal wave ray paths, have been held responsible for the apparent absence of an 
attractor in the much larger Faroe-Shetland channel (Gerkema & van Haren 2012). 
The absence of an attractor may, however, also be due to a mismatch between aspect 
ratio and the ratio of wave and stratification frequencies. Recent satellite observations 
of internal solitary waves suggest that wave attractors might actually have served as 
the amplification mechanism required to explain the enigmatic appearance of internal 
solitary waves from weak surface tides over a particular 80 km stretch of the Red 
Sea (da Silva et al. 2012). This seems to emphasize that higher spatial resolution of 
periodic internal wave fields is needed in in situ measurements.

Here we concentrate on an unsolved ‘academic aspect’, addressing the response 
of a uniformly stratified two-dimensional fluid to an initial perturbation in a basin 
whose shape breaks the reflection symmetry of internal gravity waves. The ansatz of 
a time-periodic, single-frequency (monochromatic) solution to the linearized internal 
gravity wave equations yields a wave equation in space with Dirichlet boundary 
conditions. This makes the problem quite unusual, as it is ill-posed due to non­
uniqueness. The problem allows for weak solutions that can be solved using the 
method of characteristics or through a regularization technique (Swart et al. 2007). 
Via the method of characteristics one can study the limit behaviour of reflecting rays 
in bounded domains. The most generic asymptotic solution is an attractor, which is 
a finite closed orbit of rays within the domain. The particular structure of internal
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F i g u r e  1 . Limit cycle wave attractors corresponding to a discrete set of frequencies from 
the respective continuum ranges. Different line thicknesses correspond to distinct wave 
attractors: (a) class of (1, 1) attractors; (£>) class of (1, 3) attractors.

gravity wave attractors in a tilted square domain depends on the rotation angle of the 
square 9, the wave frequency co, and the stratification frequency Nf . A family of wave 
attractors is characterized by the number of reflections of a member-attractor from the 
boundary. By symmetry considerations, an attractor must reflect an equal number n 
times with the top and bottom domain boundaries, and an equal number m times with 
the left and right boundaries. Such an attractor is called an (n, m) attractor. Figure 1 
shows a discrete sample of the attractor geometries from the infinite classes of (1, l l- 
and (1, 3)-attractors in a tilted square domain (see § 2).

Due to the ill-posedness of the monochromatic wave problem, we are motivated 
to study the initial value problem for internal gravity waves in a confined region. 
Alternatively, one could introduce viscosity, which regularizes the monochromatic 
wave problem, allowing for its approximate analytical solution (Ogilvie 2005). 
Lighthill (1996) considered the initial value problem for the evolution of a localized 
disturbance in an unbounded domain, deriving the dispersion relation and noting that 
vortical structures remain stationary after internal gravity waves have propagated away 
horizontally. In this paper we study internal waves in a stratified fluid filling a domain 
with solid walls, so that wave motion is trapped inside. We consider the simplest 
case that admits wave attractors: perturbations to a linearly stratified inviscid fluid, 
either freely evolving or parametrically excited. To guarantee that viscous effects play 
no role -  not even implicitly via ‘numerical diffusion’ -  we construct a numerical 
discretization that conserves total energy and symmetry in the absence of forcing, and 
study two idealized theoretical configurations: freely evolving (i.e. unforced) flow, and 
parametrically excited flow. We proceed with a normal-mode analysis of the discrete 
model. For the freely evolving case, we analyse the unforced initial boundary value 
problem, to show how linear dynamics is partitioned into normal modes for different 
classes of initial conditions. Figure 2 illustrates the free evolution from Fourier modes 
with wavenumbers (1, 1) and (1,3), respectively. Evident in the plots at later times, 
we observe structures reminiscent of the full class of (1,1) and (1,3) attractors, 
suggesting a relationship between the Fourier modes and attractor geometries, for 
which we give some motivation. For the parametrically excited case, the normal-mode
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F ig u r e  2. (Colour online) Evolution of the stream function in time from two distinct Fourier
mode initial conditions.

analysis reveals that the flow may be decomposed into independent Mathieu equations, 
and that those modes whose associated frequencies lie within the resonance zones 
(Arnold tongues) will be amplified, forming a wave attractor.

It is important to note that the existence of a complete normal-mode decomposition 
for the discretized model contrasts sharply with the continuum model, for which the 
eigenspectrum is continuous and no such decomposition exists (Maas 2005). The 
continuous spectrum for the continuum model actually implies the existence of an 
uncountable infinity of time-periodic solutions, corresponding to the arbitrary definition 
of the boundary condition on the fundamental intervals, which we discuss. For the 
discretized system, the finite basis of normal modes is precisely the time-periodic 
solutions. The complete normal-mode decomposition for the discrete model is also 
non-robust with respect to viscous perturbation of the system. For the forced system 
with viscosity, the normal-mode basis becomes time-dependent, meaning the solution 
cannot be decomposed into scalar problems.

The paper is organized as follows. In §2 we recall the two-dimensional linear 
hydrostatic inviscid Euler-Boussinesq equations which govern internal gravity waves 
in stratified fluids, discuss monochromatic solutions in a tilted square domain, and 
review the Hamiltonian structure. In §3 we describe a structure-preserving finite 
difference discretization on the tilted square and present the normal-mode analysis 
of the discretized model in the unforced and forced cases. Using the symmetries of 
the discrete differential operators, we show that in both cases the dynamics may be 
projected onto an invariant basis of normal modes, such that they entirely decompose 
into independent scalar problems: harmonic oscillators in the unforced case or Mathieu 
equations in the forced case. In § 4 we present numerical experiments of the unforced 
and forced models. We observe that an (n, m) Fourier mode initial condition projects 
mostly onto the range of the associated (n, m) attractor, explaining the similarities of 
figures 1 and 2. For the forced model we observe that if the initial condition has a 
non-trivial projection onto normal modes with amplified Mathieu dynamics, a wave 
attractor will emerge. Conclusions are summarized in § 5.
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2. Euler-Boussinesq equations
2.1. Internal gravity wave equations

We consider a vertical slice domain D e l 2 with boundary 3D and Cartesian 
coordinates x  =  (x, z), where ;  is directed antiparallel to the direction of gravity, g. 
We decompose the fluid density field and the pressure field as follows:

p(x, Z, t) =  Po +  p(z) +  p'ix, z, t) ,  pix, z, t) =  p(z) +  p'ix, z, t) ,  (2.1)

where p0 is an average constant mean density and p(z) is a mean static density 
stratification, i.e. a monotonically decreasing function of c. The sum p0 +  p(z) defines 
a stable background density field in hydrostatic balance with the pressure field p(z):

f P  =  -g(Po +  P ( z ) ) ,  (2 .2 )

where g is the gravitational acceleration. The quantities p ix. z. t) and p ix. z. t) are 
small-amplitude perturbations about the (steady-state) background density and pressure 
fields.

In geophysical and astrophysical fluid dynamics it is common to treat the density 
field distinctly, defining both an ‘inertial mass’ and a ‘gravitational mass’. The 
Boussinesq approximation consists of assuming a constant density value p0 for the 
inertial mass in the momentum equation (from which the density may be consequently 
removed), while maintaining the full density p for the gravitational mass. We 
enforce the inequality \p'\ «  |p(-)| <sr p0 to justify the Boussinesq approximation. 
Such flows are termed ‘buoyancy-driven’. The background stratification defines a 
stratification frequency, Nf  (the Brunt-Väisälä frequency), where Nj  =  —gp,, 1 d/ô/ dr. 
In the following we assume that Nf  is a constant, i.e. the fluid is linearly stratified in 
the background density.

Wave focusing occurs when a boundary of the domain is inclined with respect 
to gravity. For this reason we assume that the coordinate system is rotated through 
an angle 0 <  0 <  jt/4. With the above considerations in mind, the inviscid linear 
Euler-Boussinesq equations describing the propagation of perturbations in this rotated 
frame read:

3 tu = - N p  + bk(6), (2.3)

d,b = —Nju  'k(9),  (2.4)

V • u = 0, (2.5)
« • « =  0 on 3D, (2.6)

where u =  (u. w) is a velocity field in the x  and ;  direction respectively (now tilted
relative to the original direction), p = p,, is scaled pressure with respect to the
mean constant density, b =  —gp'Pq1 is the buoyancy, k(9) =  ( sin 7, eos 6) is the unit 
vector in the direction opposite to gravity and n is the unit outward normal to the 
boundary 3D.

In two dimensions it is convenient to consider the stream function formulation of the 
Euler-Boussinesq equations (2.3 )—(2.6). The divergence-free condition (2.5) allows us 
to define a stream function f  on D such that

11= — d-f ,  W = dxf .  (2.7)

By taking the curl of the momentum equation (2.3) we eliminate the pressure from
(2.3), obtaining the two-dimensional linear inviscid Euler-Boussinesq equations in
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stream function formulation:

d,q =  —8xbcos0  +  dzbs'mO, (2.8)

3,b = —Nj(dxifr eos 9 — 3-1fr sin ö ), (2.9)

q = -  A f ,  (2.10)
f  =  0 on 3D.  (2.11)

where q =  3zu — 3xw is vorticity.
The model (2.8)—(2.11 ) is a system of partial differential equations that conserves 

total energy:

Ĵ =\JD{Wf'Wf + j^b2) dX’ (2A2)
equal to the sum of kinetic and potential energies.

2.2. Forcing
Wave attractors are generated by periodically forcing a stratified fluid in a domain with 
inclined boundaries. In the ocean, the forcing is primarily tidal forcing. In laboratory 
experiments (Maas et al. 1997; Lam & Maas 2008), wave attractors were generated by 
vertically oscillating a container with a sloping wall. To incorporate such parametric 
excitation (McEwan & Robinson 1975) (2.8) is modified by multiplication with a 
time-dependent function a(t) to obtain

3 ,q =  a(t)(—dxbcos9  +  3-hsin0). (2.13)

An alternative approach is external excitation, e.g. a horizontal oscillation of the 
container, for which time-dependent terms may be added to (2.8) and (2.9) (Ogilvie 
2005), or by means of boundary forcing (Grisouard et al. 2008).

Vertical oscillation of the container can be viewed as time-dependent modulation 
of the gravitational parameter g, which originally enters the momentum equation, and 
should thus be present only in the vorticity equation (2.8). Hence, we can realize this 
kind of forcing as parametric excitation with

a(t) = 1 — € cos(2cot), (2.14)

where e is a positive constant smaller than one and 2co is the forcing frequency.

2.3. Dispersion properties o f  internal gravity waves 
Consider a time-periodic solution

f ( x ,  z, t) = F(x, z ) ^ ia', b(x, z, t) = BÍ X,  z)Q~iwt■ (2.15)

Substituting the above ansatz into (2.8)-(2.10), eliminating B and taking 9 = 0 without 
loss of generality yields

(Nit — co2)
9 F  3 x ^  =  0, (2.16)

C O 1

which is recognized as a wave equation when o f  < Nj for the scalar state variable 
F . In other words, internal gravity waves are spatially governed by the wave equation. 
Substituting the plane wave

F (x, z) = a expiiC^x +  kzz)) (2.17)
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into (2.16), where a is the amplitude and kx and kz are wavenumbers, yields the 
dispersion relation

wavenumber vector k =  |/c|('cose/>, siiu/y), where /c is the wavenumber magnitude

are bounded by the stratification frequency N f. It is also apparent that the wave 
frequency is independent of the wavenumber magnitude and depends only on its angle 
<p. Consequently an incident wave retains its propagation direction upon reflection 
from a plane surface independent of the slope of the surface, leading to monoclinic 
(single-angled) waves. A wave does, in general, change its wavelength, and can 
become focused or defocused upon reflection from an inclined boundary. It is well 
known that the wave phase travels in the phase velocity direction cp = c o k /  |i c |2 and 
wave packet energy is transported by the group velocity cg = VK&>, (Whitham 1999). 
The internal wave group velocity vector cg and phase velocity vector cp are mutually 
perpendicular, i.e. cg -cp =  0. Hence internal waves propagate energy parallel to the 
wave crests and troughs (i.e. along them).

The wave equation (2.16) with Dirichlet boundary conditions (2.11) is formally an 
ill-posed problem (Swart et al. 2007). One not only finds a trivial solution t// =  0, but 
there exist infinitely many solutions. For example, the hyperbolic wave equation (2.16) 
can be solved on a non-inclined (9 = 0) rectangular domain (x. z) e [0,1] x [0, I | by 
separation of variables. The function

satisfies the hyperbolic equation (2.16) and boundary condition (2.11) provided that

Replacing integer (n. in) in (2.20) by (jn.jin) leaves Í unchanged, and for integer 
j ,  W still vanishes at the boundaries. In this non-inclined case there is a countably 
infinite set of solutions to the wave equation (2.16); in the inclined case this set is not 
countable, resulting in the ill-posedness.

The general solution of the wave equation (2.16) is given by

for arbitrary functions ƒ  and g. Hence the function g is constant along a characteristic 
line x + y z  = const., and likewise ƒ  is constant along lines x — y z  = const. Furthermore, 
the Dirichlet boundary condition, & = 0, implies that ƒ  =  g on the boundary. 
Therefore, from any point p  in the domain, one can define an orbit, consisting of 
a characteristic passing through p  and the infinite sequence of successive reflections 
of that characteristic in both forward and backward orientation upon which ƒ  and g 
are alternately constant. Such a sequence of characteristics will be referred to as a 
characteristic orbit. Two characteristic orbits intersect at each point p  in the interior

(2.18)

the last equality of which follows from the polar coordinate description of the

and <p its direction. Hence, o f  A N f  and the frequencies of internal gravity waves

2.4. Monochromatic wave solutions in a tilted square

& =  An.m sin(njtx) sin(n/.jt;/1) (2.19)

(2 .20)

de (x. z) = f ( x  - y z )  -  g(x +  yz ) . y / (2 .21)
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of D, and the difference ƒ  — g determines the stream function at p. One can follow 
characteristic orbits that intersect at p  until they reach a boundary segment upon which 
the function ƒ  =  g. The problem of determining a well-posed monochromatic solution 
is reduced to that of identifying a minimal set of distinct intervals, the so-called 
fundamental intervals, on the boundary where the functions ƒ  and g may be prescribed 
(see Maas & Lam 1995).

For this paper we will study internal waves in a tilted square domain. In 
the tilted unit square the topology of a complete characteristic orbit passing 
through a point depends on the angle of tilt 9 and the ratio of wave frequency 
to stratification frequency co/Nf. In the subcritical case all characteristic orbits 
asymptotically approach diagonally opposite comers of the square. This occurs when 
the characteristic slopes ± y  are both either larger or smaller than the inclination of 
both horizontal and vertical boundaries. In the supercritical case one can distinguish 
an additional three types of limit behaviour: periodic, ergodic and limit cycle orbits 
(John 1941; Kopecz 2006). In the periodic case all characteristic orbits reflect from 
the boundary at a finite number of points, the fundamental intervals collapse onto one 
another, and the characteristic orbit through every point is periodic. In the ergodic 
case, the characteristic orbit through any point passes arbitrarily close to every other 
point in the domain, the fundamental interval shrinks to a single point, and the stream 
function then necessarily vanishes, implying no flow. However, the most generic case 
of limit behaviour of the characteristic orbits is an attractor or limit cycle, i.e. one or 
more distinct periodic orbits that attracts a neighbourhood of itself. Such attractors are 
characterized by the number of boundary reflections from the horizontal and vertical 
boundaries. Considering the symmetry of the top and bottom boundary and of the 
two side boundaries, we denote by (n, m) an attractor having n reflections from the 
boundary on the upper side of the square and m reflections from the left side of the 
square. The overall number of reflections with the boundary (2n + 2m) is called the 
attractor’s period. In the unit square domain all attractors are globally attracting.

The choice of the fundamental intervals on the boundary and the functions 
prescribed on them is not unique. In the subcritical case it is sufficient to prescribe 
only one interval between two successive characteristic reflections from the boundary. 
In the ergodic case the solution may be prescribed at only one point on the boundary 
yielding the trivial solution \¡s = 0 of the wave equation (2.16) due to the zero 
Dirichlet boundary conditions (2.11). For the periodic and attractor cases one must 
prescribe one or two intervals on one of the square’s boundaries, respectively. For a 
complete discussion see Maas & Lam (1995).

Let us take a closer look at periodic solutions and limit cycles. The experimental 
variables are the wave frequency co, stratification frequency Nf  and rotation angle of 
the square 9. In the periodic solution regime, all orbits correspond to odd-even pairs 
(2n,2m +  1) or (2n +  1,2m). But the periodic regime is non-robust with respect to 
perturbations in domain geometry. In the tilted square domain these solutions occur 
only for a discrete set of frequencies. In contrast the limit cycle attractors persist 
over a continuous range of frequencies, hence are robust with respect to frequency 
perturbations. In the simplest periodic case the characteristic orbit emanating from, say, 
the lower left comer of the square will precisely intersect the lower right comer after 
making n successive reflections from the top of the square, or will intersect the upper 
left comer after m successive reflections from the right side of the square. In both such 
situations we have analytic expressions relating the wave frequency co, stratification
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Subcritical case

Supercritical cas

fn =  1
n =

m =
= 3

(b) n /4

0.24 0.45 0.70 0.89 1.00
(ù/Nf

3JI/16 Subcritical case

0.2 0.4 0.6 0.8
£û / N f

F i g u r e  3. (Colour online) Parameter space for monochromatic solutions: (a) loci in 
parameter space corresponding to periodic solutions (2«, 1) and (1,2m); (b) limit cycle 
attractor period, indicated by shading.

frequency Nr and rotation angle of the square 9 :

cot ( 9 +  tan S
co­

r f  -  co2
— cot \ 9  — tan S

co-

Nf — co2 J n '

tan 0 +  tan-i co-

N f -  co2
— tan 0 — tan-i co-

N f  — co2 I m  '

(2.22 a) 

(2.22b)

respectively. Hence these periodic solutions are indicated as (2n. 1) and (1,2m) with 
periods 2(2n +  1) and 2(2m +  1), respectively. Similar periodic solutions can be 
computed when the characteristic orbits have multiple reflections from both the left 
and top boundaries, and geometries (2n. 2m +  1) or (2n +  1, 2m).

Figure 3 illustrates the parameter space co/N f versus 9. The bold line separates 
subcritical and supercritical regimes. Within the supercritical region of figure 3(a), 
we indicate the loci of parameter values corresponding to periodic solutions of the 
classes (2n. 1) and (1,2m). Note that for a given rotation angle 9 , the periodic 
solutions correspond to discrete values of co/N f. Limit cycle solutions are indicated in 
figure 3(b), where the shading denotes the period of the attractor. Periodic solutions 
(figure 3a) are found where the attractor period (figure 3b) approaches infinity.

Figure 4 shows solutions of the monochromatic wave (2.16) for the (1, 1) and
(1,3) attractor cases and for the (1,2) periodic case, for specific values of 9 
and co/N f. In figure 4(a,b) we show two typical members from the respective 
continuum ranges of limit cycle solutions. In both cases one can observe a self-similar 
structure approaching the attractor. The solutions were constructed using the method of 
characteristics; on the fundamental intervals we prescribe two cosines with an offset 
at the chosen intervals. For a square-shaped attractor in a trapezoidal geometry, a free 
wave solution possessing a logarithmic self-similar Fourier spectrum was computed 
analytically (Maas 2009).

3. Numerical discretization and linear analysis
In this section we describe our discrete model equations and show that in the special 

case of linear inviscid flow, the dynamics decouples into scalar oscillators.
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- 0.2  0.2  0.6

2.5 Cb)2.0 1.0
1.0 0.8

0.60 0.4
-1.0 0.2
-2.0 0

2.5 (c)2.0 1.0
1.0 0.8
0 0.6

-1.0 0.4
0.2-2.0-2.5 0

- 0.2 0.2

F ig u r e  4. (Colour online) Monochromatic stream function solutions: (a) within the (1, 1) 
attractor frequency range (co/Nf =  0.74, 8 = 7jt/72); (b) within the (1, 3) attractor frequency 
range (co/Nf =  0.34, 8 =  Jt/18); (c) the unique (1,2)  periodic solution (co/Nf = 0.43, 
8 =  jt/15).

3.1. Fourier analysis o f  the continuum model, non-tilted
For a non-tilted square domain (0 =  0), the initial boundary value problem for the 
linear Euler-Boussinesq equations (2.8)—(2.11) with initial conditions f f x ,  z) and 
bo(x, z) and zero Dirichlet boundary conditions (2.11) can be solved analytically using 
separation of variables. The solution is

X 00

f ( x ,  z, t) = ^2 fn.mix, Z)— T„,m(t), b(x, Z, t) = - N f  22 f f n . m f ,  Z)T„,m(t), (3.1)
n,m= 1 n,m= 1

where f njn(x,z) = sin(7;xi) sin(7//nr) are Fourier modes on the unit square, i.e. the 
eigenfunctions of the operators 3XÏ and dzz under the given boundary conditions, and 
Tnjn is a solution to the simple harmonic oscillator equation

dt2 — coz =  N;
f  n2 +  m2 '

(3.2)

with the frequencies given by the dispersion relation (2.18).
The total energy functional (2.12) of the general solution in the form (3.1) is

(n2 +  nf)  ( — Tnjl + N/n2Tl„ /  ?
n,m= 1

(3.3)

where for each (n ,m ), the term in square brackets, is the independently
conserved Hamiltonian of (3.2). Note that there is no coupling between wavenumbers. 
The initial conditions may be projected onto the Fourier modes, but each mode evolves 
independently, and there is no energy exchange between modes.

The situation for 8 f  0 is very different. The initial boundary value problem
(2.8)—(2.11) cannot be solved analytically by the method of separation of variables 
as was done above. The eigenfunctions in the tilted case correspond to the ill-posed 
solutions of (2.16), and have no simple representation. However, as we show in the 
next section, the numerical discretization does admit a normal-mode analysis.

3.2. Energy-conserving numerical discretization and analysis
Making use of the Hamiltonian structure of (2.8)—(2.11), we construct in appendix A 
an energy-preserving numerical discretization. Discretizing in space while leaving time
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continuous yields the following system of linear ordinary differential equations (cf. 
(A 27 )-( A 29)):

where f  e and b e R^, M  < N,  are vectors containing the values of t// and b at 
(staggered) grid positions. The finite difference matrices Mx, Mz, Dx, D and L, defined 
in § A .l, represent discretized mean (Aí*), difference (/).) and Laplacian (L) operators, 
and superscript T denotes the transpose. Here we have introduced the factor a(t), 
which allows us to add forcing by means of parametric excitation. Introducing the 
matrix K = DTXMZ eos 9 — DlM sinö, this system can be written in matrix form as

By construction, when forcing is absent (a = 1) the discretization possesses a first 
integral, the discrete Hamiltonian H  (A 18), which approximates the total energy
(2.12), i.e.

In appendix B we derive the normal-mode bases X  = ( X i  X M) and Y =
(F i  T v), in which f  and b are expressed as (cf. (B 12))

- L - ^ -  = a(t)(D'xMzb eos 9 -  D¡Mxb sinri), 

^  =  —Nj (NÍI Dxf  eos 9 — NÍ[Dzf  sinri),

(3.4)

(3.5)

(3.6)

(3.7)

ifr = X ÿ , b =  Yb. (3.8)

In the new basis, the system (3.6) decouples into M  second-order problems:

i}¡ = - a ( f c o r f i  +  á(t)cü¡b¡.

(3.10)

(3.9)

for i = 1 M, plus the trivial dynamics (d2/d /2 )/y =  0, i = M  +  1 N.
When forcing is absent, ait) =  1, the dynamics further decouples into 2M  

independent harmonic oscillators
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In particular, the total energy can be expressed as the sum of the harmonic oscillator 
energies

M

H't =  — (3.12)

each of which is a conserved quantity.

Remark. In § 2 we saw that there are infinitely many monochromatic wave solutions to 
the linearized Euler-Boussinesq equations, corresponding to an arbitrary specification 
of the solution on a fundamental interval. For the discretized equations, of course, 
there can be only a finite number of periodic solutions, each corresponding to a 
normal mode of the discretization matrix. This situation is analogous to the case of the 
advection equation p, +  upx =  0 on a periodic domain, for which any initial condition 
pix. 0) =  f (x )  is periodic in time. Upon numerical discretization of this equation, the 
dispersion relation is altered, an arbitrary initial condition may be expanded in normal 
modes, and each of these evolves with a different phase speed, causing artificial 
dispersion. Only the (finite countable) normal modes themselves are periodic.

When parametric forcing is present in (3.10), i.e. ad)  = 1 — e eos 2cot, the buoyancy 
modes evolve independently according to the Mathieu equation

U ~ ~ ~
— b¡ =  —(1 — e cos(2cot))corb¡. (3.13)

The Mathieu equation supports resonance zones in parameter space for which the 
solution grows unbounded in magnitude, as well as stable (non-resonant) zones 
for which the solution remains bounded for all time. The first and most important 
instability region originates at the subharmonic frequency co of the driving frequency 
2co (see Arnold 1989).

3.3. Dynamics o f  the Mathieu equation 
Rescaling time with respect to the stratification frequency N f,  i.e. f  = Nf t, in (3.13) 
yields, dropping primes,

dt2
b¡ =  — 1 — e eos

co 
2— t 

Nf NI
b¡. (3.14)

where oof/Nj d  1 from the dispersion relation. For a given value of the (normalized) 
first subharmonic forcing frequency \co/Nf f  1 we are interested in knowing for which 
normal-mode frequencies co¡/Nf and forcing amplitude e (3.14) and (3.13) support 
resonances.

Introducing a second time transformation, f  = coNff,  we write the scalar Mathieu 
(3.14) in the general form

— ß +  (a -  2qcos(2t))ß = 0, 
df-

(3.15)
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F igure 5 . (Colour online) Instability tongues of the Mathieu equation, the shading denoting 
the magnitude of Floquet exponent Re p, as a function of normal-mode frequency w¡/Nf 
for different forcing amplitudes e. (a) Subharmonic forcing frequency o>/N, = 0.74, one 
instability tongue in the computation of the (1,1) attractor. (b) Subharmonic forcing 
frequency o> /N, = 0.34, two instability tongues in the computation of the (1,3) attractor. The 
vertical and horizontal dashed lines indicate forcing frequencies and amplitudes respectively.

where ß = b¡, a =  cor/co1 <  N j / c f  and q =  (e/2)co¡/co2 <  (e/2)Nj / c f  for a given 
normal mode i. According to the Floquet multiplier theorem, the Mathieu equation for 
fixed a and q admits a complex-valued general solution of the form

ß(t) =  C i f P i a ,  q, t) +  c2e~firP(a, q, - t ) ,  (3.16)

where p f  0 is a complex Floquet exponent and P(a, q, I) is a complex-valued, j t-
periodic, special function, i.e. P(a, q, t +  j t)  =  P(a, q, t). If Re p = 0, the solution 
ß(t) is bounded for all time. If R e p  f  0, the amplitude of the oscillations grows 
exponentially. For the degenerate case p  = 0, the solutions are linearly dependent and 
the amplitude grows linearly in time.

To determine the Floquet exponent p  we note that by taking as initial conditions 
ß(0) = 1 and /i ('(),) =  0 one finds Ci =  c2 = (2P(a, q, O,),) and hence the solution at 
time f =  it is

jö(jt) =  cosh/m . (3.17)

Therefore p  can be estimated by solving (3.15) numerically on the interval [0, jt] .
For a given forcing oo/Nf, we solve for p  numerically using the Störmer-Verlet
method (Hairer, Lubich & Wanner 2006) over a discrete set of values e e [0,1] and
coi/Nf e [0, 1],

Our goal is to investigate the emergence of the two internal wave attractors 
presented in §2 by use of the parametric excitation mechanism described above. 
We expect that after an initial transient phase, the solution will be dominated by those 
normal modes having positive Floquet exponents. We fix e =  0.1 and choose forcing 
frequencies 2oo/Nf, whose subharmonics excite the patterns in figure 4, i.e. we choose 
co/Nf =  0.74 or oj/Nf =  0.34, respectively. In figure 5 we plot the real part of the 
Floquet exponent p  as a function of normal-mode frequency cú¡/Nf  G [0, 1] (regarding 
cùi/Nf as a continuous variable). For these two cases we obtain the instability tongues 
shown in figures 5(a) and 5(b), respectively. Figure 5(a) shows the real part of the 
Floquet exponent p  for subharmonic forcing frequency cv/Nf  =  0.74. The resonant



296 J. Bajars, J. Frank and L. R. M. Maas

instability tongue originates at ojfNj  =  0.74, and superharmonic resonances (nco/Nf, 
n =  2, 3, . . .)  are absent because they fall outside the admissible range of normal-mode 
frequencies. Figure 5(b) shows Re p  for subharmonic forcing frequency oj/Nf =  0.34. 
The first resonant instability tongue then originates at cú¡/Nf =  0.34, and also the first 
superharmonic resonance at ojfNj  =  2oj/Nf  =  0.68 falls within the admissible range of 
normal-mode frequencies. For a given value of subharmonic forcing frequency cv/Nf, 
the rotation angle 0 g [0, Jt/4] determines the type of limit behaviour observed, e.g. an 
attractor or a periodic solution: see figure 3.

Since the forced internal wave equations (3.4)-(3.5) can be decomposed into the 
Mathieu-type equations (3.9)-(3.10), the theory of Mathieu equations suggests that, 
depending on the values of the Floquet exponent, there will be resonant normal modes 
which will grow exponentially in time and there will be other modes which will 
stay bounded. The presence of resonant normal modes is dependent on the initial 
conditions. If a particular initial condition is such that its projection onto normal 
modes has no components within resonant zones of the Mathieu equation, then the 
solution of the forced linear internal wave equations (3.4)—(3.5) will stay bounded for 
all times. Hence the choice of initial conditions for computations is not arbitrary. The 
analysis in §4.1 of the system’s response to different initial conditions in the unforced, 
undamped linear case suggests that the natural choice for finding (1,1) and (1,3) 
attractors would be initial conditions i/̂ i.i and respectively. This implies that there 
will be resonant normal modes.

4. Numerical experiments
4.1. Freely evolving flow 

Armed with the theory of internal gravity wave attractors in a tilted square from § 2 
and the structure-preserving discretization of the Euler-Boussinesq equations in the 
stream function formulation from §3, we study the initial boundary value problem. 
Since we consider the inviscid equations, the system does not depend on spatial scales 
and time can be rescaled with respect to stratification frequency N¡ to cast the system 
in dimensionless form. As we will see in the following, the response of the system 
will depend on tilt angle 0 and on the choice of the initial conditions.

We study the response of the system with the Fourier mode initial conditions:

fo(x, z) = fn,m(x, z). bo(x,z) = 0, («,///.) =  (1, 1), (1, 2), (1, 3). (4.1)

These initial conditions correspond to low-wavenumber smooth functions. When 0 =  0 
the Fourier modes are eigenfunctions, as described in §3.1, and all three initial 
conditions result in single-frequency standing wave solutions whose frequency is 
determined by the dispersion relation (2.18). When 0 0, i.e. the domain is tilted
by the angle 0 or the direction of gravity is changed, the Fourier modes are no 
longer eigenfunctions, and we observe a different response from the system for initial 
conditions (4.1).

In all three numerical examples we use the same numerical parameters and 
parameter values. We compute to final time Tend =  400 with time step r = 0 .05 . 
The spatial mesh sizes in both space dimensions are equal, Ax =  A j =  2 x 1CT3. We 
fix the stratification frequency Nf  =  1 and choose 0 =  jt/20 for the rotation angle 
of the square. The Störmer-Verlet method (A30)-(A33) conserves energy in time 
up to fluctuations of amplitude 0(  z 2). For this choice of r the relative error of 
the Hamiltonian function (3.7) remained smaller than 1CT3 in all three numerical 
experiments. Computational results with initial conditions i/q,i and i/q,3 are shown in



Appearance o f wave attractors 291

F i g u r e  6 . (Colour online) Evolution of the stream function in time from the initial condition
f i a -  (a ) f  - 1 =  0; (b) f ,  t =  100; (c) f ,  t =  200.

figure 2. Results with the initial condition f l-2 are shown in figure 6. In all three 
examples we plot the evolution of the stream function at three distinct times.

Complementary to the state variables we also look at the energy density function, i.e. 
the distribution of the energy in space. Hence we define the discrete energy density 
function at the cell centres, making use of the discrete velocities defined by (A 17),

Ei+lß.j+lß =  2 Mi+l/2j+l/2 +  2 W>+lA/'+l/2 +  fffj^i+lß.j+lß' (4.2)

In the numerical example with initial condition , we observe that energy that 
is initially concentrated at the low wavenumber is transported to large wavenumbers. 
Evidently, in figure 2 the whole family of (1, 1) attractors is observable. The evolution 
from initial condition i/u.3 is similar, but in this case the family of (1,3) wave 
attractors is obtained: see figure 2. On the other hand, with initial condition i/q-2 the 
solution appears to consist mainly of a strong periodic component, plus small-scale 
fluctuations.

We have seen that the energy functional (2.12) is conserved along the solution of the 
continuous system (2.8)—(2.11). Furthermore, backward error analysis of symplectic 
numerical integrators (Leimkuhler & Reich 2004; Hairer et al. 2006) applied to 
Hamiltonian systems shows the existence of a perturbed Hamiltonian of the form 
H + 0 ( z 2') which is exactly conserved. For our problem, this implies the discrete total 
energy (3.7) will be conserved up to bounded fluctuations with amplitude 0 ( z 2) along 
the solution of the discrete system (A30)-(A33). Nevertheless, we observe that the 
amplitude of the stream function decays. That can be seen by comparing the intensity 
bars in figures 2 and 6. For total energy to remain constant, there should either be 
a net exchange of kinetic into potential energy, or the amplitude of vorticity should 
grow commensurate to the loss in stream function. To confirm this we study the time 
series of the state variables: stream function, vorticity, buoyancy, velocities (A 17) and 
the energy density function (4.2), at three arbitrarily chosen points in space. These 
three points are shown in figure 2(a). In figure 7 we plot numerical time series data at 
these three points for the initial condition f u . From figure 7 we see that for energy 
to stay bounded when the amplitude of the stream function decays the amplitude of 
the vorticity grows and buoyancy, energy density function and the components of the 
velocity field stay bounded. This is reminiscent of the familiar cascade of vorticity 
to large wavenumbers in two-dimensional fluids, but note that the nonlinear advection 
terms are neglected in this model, so the observed effect is really due to dispersion 
among the normal modes.

The presence of only a single family of wave attractors in the time evolution of 
the initial conditions i/u,i and t//, j  suggests the excitation of only those frequencies
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F ig u r e  7. (Colour online) Time series of the stream function, vorticity, buoyancy, velocity u, 
velocity w and energy density function £  at 3 points in space from computations with initial 
condition t/u,i and b = 0: (a) f  at 3 points; (b) q at 3 points; (c) b at 3 points; (d) u at 3 
points; (e) w at 3 points; if) E at 3 points.

(c) 1.0 

0.8

0.6 0.6

0.4 0.4

0.2 0.2

0 - 0
a  =  0.316

......... ,:..i
:
;

L ...: ........

0.6

0.4

0.2

: 0 = O  
: io =  0.447

: 1 .
0 0.25 0.36 0.58 0.82 1.00

ù)
0 0.25 0.36 0.58 0.82 1.00

a
0.25 0.44 0.58 0.82 1.00 

ù)

Figure 8. (Colour online) Energy projections upon normal modes of the semi-discrete 
system (3.4)—(3.5) for initial conditions: (a) t/u ,u  H¡/max{H¡}; (b) t/h,3 . H¡/rmx{H¡}; (c ) 
ÍrU2,Hi/max{Hi}.

associated to the respective class of (1,1) and (1,3) wave attractors, respectively. 
Similarly, the nearly periodic evolution from the i/q,2 Fourier mode suggests the 
dominance of the periodic (1, 2) solution.

To understand this, we project the Fourier modes onto the normal modes of the 
tilted system. We expand the initial conditions (4.1) in the normal modes of the 
semi-discretization (3.4)—(3.5) for 0 = jt/20 and Nf  =  1 and plot the scaled discrete 
energy values H¡/max{H¡} with respect to the frequencies of the discrete system in 
figure 8(a,b,c). In each of these figures we plot a dashed line to indicate the standing
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F ig u r e  9. (Colour online) Attractor period as a function of subharmonic forcing frequency 
co/Nf for the fixed angle 9 =  j t / 20. Horizontal bars indicate families of limit cycle attractors; 
dashed lines indicate the discrete periodic cases.

wave solution frequency for 0 =  0. The data for figure 9 were taken from the cross- 
section of figure 3(b) corresponding to tilt angle 0 =  j t / 20 , and were computed by 
following characteristics. The figure indicates the attractor periods of the limit cycles 
observed as a function of (subharmonic) forcing frequency, for attractors having period 
less than eighteen. The horizontal bars reflect the fact that there is a continuous range 
of forcing frequencies that lead to limit cycle attractors of a given geometry, e.g. 
the class of (1, 1) attractors having period 4. For 0 =  j t /20  there exist precisely six 
periodic solutions of type (2n, 1) and (1, 2m) whose discrete frequencies are indicated 
by the vertical dashed lines. Comparing figures 9 and 8(a) we see that the (1,1) 
Fourier mode projects almost entirely onto the range of (1, 1) attractors. Since there 
is no energy transfer between normal modes, the solution of the semi-discrete system 
with initial conditions i/q,i at any time is a linear combination of the normal modes 
with frequencies in the range of the (1, 1) attractors. Similarly, most of the energy 
in the (1,3) Fourier mode projects onto the range of (1,3) attractors: figure 8(b). 
In contrast, figure 8(c) illustrates that the (1,2) Fourier mode is concentrated at one 
discrete frequency, which is very near that of the (1,2) periodic solution, explaining 
the nearly periodic behaviour of this solution.

For future reference, figure 10 shows normal modes with frequencies within the
(1,1) and (1,3) attractor ranges, as well as the distinct normal mode with (1,2) 
periodic solution frequency. The normal modes shown in figure 10 are those whose 
frequencies are closest to the forcing frequencies of the monochromatic solutions in 
figure 4. The same frequencies were used to generate the Floquet exponents plotted 
in figure 5(a,b), and to force the solutions shown in figure 11. The normal modes 
displayed in figure 10(a,b) are irregular, with high-frequency oscillations near the 
grid scale, but a low-frequency plateau structure is also evident. We have inspected 
a number of the normal modes having frequencies in the (1, 1) and (1,3) attractor 
regimes. A subset of these possess a large-scale structure in which attractor geometry 
is discernible, as with figure 10(a,b). On the other hand, many of the normal modes
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F ig u r e  10. (Colour online) Normal modes of the stream function (Nf = 1): (a) within 
the (1,1)  attractor frequency range (co =  0.74, 8 =  7,t/72); (b) within the (1, 3) attractor 
frequency range (co =  0.34, 8 =  jt/18); (c) the ( 1, 2) periodic solution (m =  0.43, 8 =  Jt/15).
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F i g u r e  11. (Colour online) Wave attractors after 50 forcing periods (i.e. t =  200): 
(a-c) (1,1) attractor regime, and (d-f )  (1,3) attractor regime, (a,d) Stream function, 
(b,e) buoyancy, and (c.f) energy density. The initial conditions are the same as in figure 2 
at time t =  0: (a) \p\ t =  200; (b) b, t = 200; (c) E, t =  200; (d) t/u t = 200; (e) b, t = 200; 
(f ) E , t  =  200.

have no apparent relation to the attractor structure. Furthermore, we were unable to 
see any functional relation between the normal-mode structure and either frequency or 
resolution. This is perhaps unsurprising, when one considers that these solutions form 
an orthogonal basis (in an appropriate inner product) for the discrete stream function 
space.

In summary, for the untilted case the response to an initial perturbation corresponds 
to an (n. in) normal mode that simply ‘sloshes’ sinusoidally in time at the single 
frequency associated with that mode. In this case there are no other frequencies 
excited. When the same initial spatial perturbation is given in the tilted square domain, 
most of its energy is projected onto the whole ensemble of (n, i i i )  attractor modes, 
each associated with a different frequency residing in the (n, in) frequency window.

0.2 0.6

(X IO7) 
4
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4.2. Computation o f  wave attractors 
In §2 we described how to compute monochromatic wave solutions in a tilted 
square. We illustrated this with two examples of internal gravity wave attractors: 
see figure 4(a,b). In this section we compute internal wave attractors as an initial value 
problem with parametric excitation, so-called parametric resonance solutions.

We solve (3.4)—(3.5) with the Störmer-Verlet method. Since we generate instability 
in the system by parametric excitation, the amplitude of the solution grows in time, 
and energy is no longer conserved. We choose forcing frequency 2co =  j t  such that 
the wave period is T = 4 and choose the normalized subharmonic frequency co/Nf  
and tilt angle 0 on the basis of the type of limit behaviour we want to simulate. We 
compute a (1, 1) attractor with parameter values co/Nf = 0.74 and 0 = l n / 1 2 ,  and a 
(1, 3) attractor with parameter values co/Nf =  0.34 and 0 =  jt/18.

Numerical parameters are fixed for both experiments: the forcing amplitude e =  0.1, 
time step r =  0.05 and grid step sizes Ax = Az =  2  x 10~3. The initial conditions are 
chosen to be the Fourier modes i/q,i and i/q,3 in the computation of the (1, 1) and
(1,3) attractors, respectively. We force the system for 50 wave periods and plot the 
stream function, buoyancy and the discrete energy density function (4.2) at the final 
time in figure 11.

Figure ll(fl-c) displays the results for the (1, 1) limit cycle attractor. The energy 
is focused on the attractor, which reflects from each side of the square once. We 
observe a standing wave solution with growing amplitude and a ‘plateau’ type of 
attractor with piecewise constant stream function. After ~10 wave periods, i.e. at time 
t = 40, the wave motion becomes localized along the straight lines of the attractor. The 
same ‘plateau’ type of attractors were observed in laboratory experiments (Hazewinkel 
et al. 2008). Since all sides of the tilted square are inclined, in the case of a simple
(1,1) attractor, internal waves become focused at all boundaries, because the energy is 
transported in an anticlockwise orientation around the attractor, as is indicated in the 
plots of the energy density function: see e.g. figure 11(c). (Note that due to focusing, 
the energy density increases after reflection. Hence, the anticlockwise direction of 
energy propagation on the attractor can be deduced from the energy density plots.)

In figure 11 ( d - f  ) we consider an example of a (1, 3) attractor. It has one reflection 
point with the upper and lower boundaries of the square, and three reflection points 
each on the left and right sides of the square. Similarly to the case of the (1,1) 
attractor, we observe a standing wave solution that grows in amplitude, and the wave 
energy is localized along the straight lines of an attractor. The form of the attractor 
is again of ‘plateau’ type. Internal waves become highly focused upon reflection from 
the upper and lower boundaries of the square and gradually defocus in the rest of the 
domain: see figure 11(f).

Following the discussion of §4.1, the choice of the initial conditions ifi.i and 
ifi ,3 ensures that there will be significant energy in the normal modes corresponding 
to (1,1) and (1,3) attractors, a subset of which will grow in amplitude due to 
resonance of the underlying Mathieu equations. Those modes with frequencies outside 
the instability tongue of the Mathieu equations remain bounded for all times and 
eventually become negligible compared to the unstable modes. Since we do not have 
external damping (as in the experiment discussed in Maas et al. 1997 and Lam & 
Maas 2008), these modes also do not dissipate. Evolution of the stable modes is 
primarily significant only during the early part of the simulation, before the wave 
attractor dominates.

Experiments with smaller values of e result in increased focusing in the 
neighbourhood of the attractor. Figure 5 suggests that early on in the computation
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F i g u r e  12. (Colour online) Deviation from a piecewise constant solution, after 50 wave 
periods: (a) (1, 1) attractor, small scales of f .  t =  200; (£>) (1, 3) attractor, small scales of 
f ,  t = 200.

all the normal modes with frequencies in the resonant zone contribute to the dynamics. 
But since those modes for which the real part of the Floquet exponent is greater grow 
much faster in time, these become more prominently visible than others. Because of 
this, energy becomes more and more focused near the attractor as time progresses.

Since there is no exchange of energy between normal modes, the precise structure 
observed at large times will depend both on the associated Floquet multipliers and on 
the initial distribution of energy among the resonant frequencies. In other words, the 
initial condition is relevant to what is observed in figure 11. On an intermediate time 
scale (here, 50 forcing periods), those normal modes whose frequencies are associated 
with the largest Floquet multipliers dominate the solution, and the observed steadily 
focusing attractor structure is a linear combination of these modes. If integration is 
carried out for much, much longer times (e.g. thousands of forcing periods for the 
current resolution), eventually only the distinct normal mode of the largest Floquet 
multiplier will be observable. This can largely be considered a numerical artifact, 
in many cases having no recognizable attractor pattem, nor corresponding to any 
physical solution. In the presence of viscosity, the various normal modes do not evolve 
independently (cf. equation (B 15) in appendix B), and the asymptotic solution is 
independent of the initial condition (Ogilvie 2005).

Typical normal modes are non-smooth, for example, as shown in figure 10. The 
solutions observed in figure 11 are primarily of plateau type. These solutions are 
composite, consisting of a linear combination of the most resonant modes. Close 
inspection of the solutions in figure 11 reveals that the plateaus are not perfectly 
flat, but that there are secondary oscillations of smaller amplitude present. To better 
observe these, we subtract the plateau solution using the following formula:

S f i j  = trunc (  VC; m m { f \  /-"j , trunei./ ) =  ƒ  -  L/J. (4.3)
\m ax{^  — mtn{^}} J

where L/J indicates the largest integer less than ƒ. The idea of the formula is to 
rescale the stream function, such that the oscillations about the plateau solution 
have an amplitude that is less than unity, and then subtract the integer part of the 
solution everywhere. This is achieved for the empirically chosen value k  = 12. We 
plot the secondary wave solution in figure 12 for the stream function at final time 
t =  200. Note the symmetry of the solution and a passing resemblance to figure 4, for
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which half-cosine waves were prescribed on the fundamental intervals. The secondary 
solutions are also robust with respect to spatial resolution and time step r. The shape 
of the secondary solution and its robustness with respect to numerical parameters 
and perturbation amplitude s suggests that the attractor shape is not truly piecewise 
constant, but has higher-order secondary waveforms.

5. Conclusions
In this paper we have considered the simplest time-dependent configuration in 

which internal wave attractors can be generated in stratified fluids: linearized, inviscid 
flow with parametric forcing. We constructed a symmetric, energy-conserving finite 
difference method. For the case of a tilted square geometry we simulated both the 
free evolution (unforced) wave evolution from Fourier mode initial conditions, and the 
parametrically forced evolution towards a wave attractor. This simple configuration, as 
well as the symmetries of the discretization, permit a complete normal-mode analysis 
of the initial value problem in the discrete case. Based on this analysis we can 
conclude that the finite-dimensional approximation has a complete basis of normal 
modes that is invariant in time, meaning that the initial value problem can be fully 
decoupled into scalar harmonic oscillators, each of which preserves its initial energy. 
Therefore, the numerical solution is quasi-periodic, although the Poincare recurrence 
time (the time over which a discrete, energy-conserving system recovers its initial 
state) may be quite large. The same analysis can be carried out for the parametrically 
forced case, showing that the forced system of ordinary differential equations (ODEs) 
can be completely decoupled into Mathieu equations. For a generic initial condition, 
and depending on the frequency and magnitude of forcing, a range of normal-mode 
frequencies will lie in an Arnold tongue of instability, and the corresponding modes 
will grow in time, eventually dominating the solution and forming a wave attractor. 
The shape of the stream function is to first order a plateau, or a piecewise constant 
function, but there are secondary solutions that are robust with respect to discretization 
and forcing parameters.

We remark that for a given forcing, it is possible to choose judiciously an initial 
condition whose projection onto the amplified frequencies of the Mathieu equation is 
zero. In this case, a wave attractor will never be generated. However, this no longer 
holds if nonlinear advection is taken into account, due to nonlinear coupling. In fact, 
even for the linearized model, if viscosity is included there is no global decomposition 
into scalar dynamics, since the normal-mode decomposition becomes time-dependent.

Acknowledgement
This research was partly financed by a grant from the Netherlands Research 

Council NWO.

Appendix A. Hamiltonian numerical discretization
The Euler equations for an ideal fluid have a well-known Hamiltonian structure 

(Arnold 1989; Morrison 1998) that strongly constrains the dynamics. When 
constructing approximate models such as the Euler-Boussinesq equations (2.3 )—(2.6), 
it is usually advisable to preserve this structure (Salmon 1998). As shown in Holm, 
Marsden & Ratiu (2002), the nonlinear Euler-Boussinesq equations inherit the non- 
canonical Hamiltonian structure from the ideal fluid Poisson bracket. Here we verify 
that the linearization leading to (2.8)—(2.11 ) also preserves a linear Hamiltonian
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structure. A system of partial differential equations (PDEs) on a function space F d 
equipped with an inner product (•, •) : F d x F d -> M is said to constitute a Hamiltonian
system (Olver 1986) in the variables J'(x, I) = (J](x, I) f f x .  /,),)' e Fd if there
exists a functional J f i f  ) : Fd —s- M and a constant, d x d matrix differential operator 
(structure matrix) J?  :Fd -> F d, that is skew-symmetric with respect to (•, •), such that 
the PDE can be expressed as

3 t f  =
.s j t r

~ ¥ '

where the variational derivative 8 J f  / 8 f  is defined by

( lF 'g) = ̂  ^  + Sg) ~ '

y  g  e f

( A l )

(A 2)

One consequence of Hamiltonian structure is the conservation of the Hamiltonian 
along solutions of (A Í), which follows from

d J f
dt

<5jr

3/
3t f  = (A3)

by the skew-symmetry condition on ƒ '.  
We show the following.

P r o p o s i t i o n  1. For any value of 9 the linearized Euler-Boussinesq equations in 
the stream function formulation (2.8)-(2.11) can be written as a non-canonical 
Hamiltonian system (AÍ)  in the L2 inner product with f  =  (q, b), structure matrix

=  - N f  eos 9 0 3, 
3, 0

+  Nj  sin 9 0 3-  

3- 0
(A4)

and Hamiltonian

J F = -  /
2 JD V l/r • V l/r -|----- t b1

Nf
d x . (A 5)

Proof. The first variations of the Hamiltonian functional (A 5) with respect to q and b 
are

<5jr = V i/r • V(5i/r -I ^b8b  ) d x
Nr

—ifrASifr H----- ^bSb  ) d x  =
Nf

1
i[r8q -\ ^bSb  ) d x ,

'D \  N f
(A 6)

where the boundary condition (2.11) has been used to carry out the integration by 
parts. It follows that the variational derivatives of the Hamiltonian (A 5) with respect to 
the vorticity q and the buoyancy b are

<5jr
Sq

=  f .
1

=  TV¡b.
8b N f

(A 7)
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Substituting (A 7) and (A4) into (A 1), we get that

/ S J f \

\  Sb /
which agrees with (2.8)—(2.11 )

3 ƒ  (A 8)

□
It follows that the Hamiltonian functional (A 5) is conserved along the solution of 

the equation system (2.8)—(2.11 ).

In this section we describe a numerical discretization for the Euler-Boussinesq 
equations that preserves a discrete analogue of the Hamiltonian structure in the 
inviscid, unforced limit. In particular, the spatially discrete system of ODEs has a 
first integral approximating the energy. The scheme also preserves the symmetries of 
the continuous differential operators. Our approach is to discretize the Hamiltonian 
and structure operator J?  separately, while enforcing the skew-symmetry of /  (see 
McLachlan 1995). Although this approach leads to a rather standard staggered central 
difference scheme here, it can be used to construct a Hamiltonian discretization on 
more general domains and non-uniform grids, which will be important for studying 
internal waves in ocean basins.

Consider the unit square domain D =  [0, I]2 divided into Nx x N: uniform rectangular 
cells. Subscripted indices indicate grid nodes x¡¿ = ( iAxJAz) ,  where A x = l / N x 
and A ; =  1 /Nz are the grid sizes in the x  and ;  directions, respectively. We shall 
construct a Hamiltonian structure-preserving staggered finite difference scheme. To 
this end let us denote by C = M.N*-'Nz the space of cell-centred grid functions and by 
V  =  R (JVj_D (A,;-i) the space of grid functions defined at cell vertices, where in the 
latter case we only include inner vertices, since the boundary vertices are either known 
or not needed in the discretization.

The discrete stream function i¡/¡j and vorticity q¡¿ are defined at cell vertices and the 
buoyancy bi+l/2,j+i/ 2  at cell centres. The discrete analogue of the boundary condition 
on the stream function (2.11) is

We define column vectors q, f  e V  consisting only of the interior grid point values of 
Híj and f,,,. The buoyancy column vector h e C consists of all the values of b w2j  in 
defined at cell centres.

We also define discrete inner products on C and V :

For the inner product on V  we assume zero boundary data for at least one of its 
arguments.

Taking into account the discrete boundary conditions (A 9), the following matrices 
implement the central finite difference approximations to the first derivatives on

A. 1. Finite difference matrices

fo  j  = f n x,j = 0, Vj, f u0 =  f iN: = 0, V/. (A 9)

N x - l . N z - l

{a,b)c = aí+i/2 ,j+i/2 b¡+i/2 ,j+i/ 2  Ax Az. a . b ^ C ,  (A 10)
¡,7= 0

N x - l , N z - 1

(A ll)
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cell edges:

(A 12)

where Dx g Wx-dw.-d ^  D 6 j^ u w -u ,w i -dw:- d - The dual operators - D ¡
and — Dj represent central finite difference approximations to the first derivatives on 
cell vertices from cell edges.

Further, we define the averaged operator matrices Mx g jev-w. i, and ¡y e 
lgNx(Nz-i). nxnz | rom ce|| centres to cell edges such that

m  L,  ¿ ¡ + 1 / 2 J + 1 / 2  +  ¿ ¡ - 1 / 2 J + 1 / 2  bi+l/2j+l/2 + bi+l/2,j-l/2 , A 1
\ m x D ) i j + i /2 —  2  '  v ™ í ” / ¡ + l / 2 j  2  ’ '

where their transposes are averaged operator matrices from the cell edges to the cell 
centres.

The matrices above can be composed in various ways to construct approximate 
derivative operators from y  to C and vice versa:

M¡DX : V ^ C \  MtxDz : V ^ C \  - D txMz : C -*  V. -D ¡M X : C -*  V. (A 14)

The discrete Laplacian operator L : V  -> V,  defined by

L = ~(DtxDx + DtzD-) e w.v-Dw-1), ( a  15)

is the standard symmetric, negative definite, five-point central difference stencil, i.e.

( L f  ) -  * i+Uj ~  2fuj  +  I ̂ Uj+l ~  2fuj  +  ^ Uj- 1. (A 16)
uj Ax2 Az2

where the boundary terms are modified to satisfy (A 9). We define the discrete vorticity 
field by q =  —L f .

For diagnostic purposes we also define the discrete velocity components at cell 
centres:

ù = - M TxDzf ,  w = MTz Dxf .  (A 17)

A.2. Hamiltonian semi-discretization 
To construct a Hamiltonian semi-discretization with structure analogous to (A4), we 
define a quadrature for H  and a skew-symmetric structure that approximates / .

In terms of inner products on C and V,  the discrete Hamiltonian is defined by

H(q,b) = ^  ( - { f . q } v  + j j 2 {b.b}c Ĵ = ^  ( ç { q , L ^ q ) v + ^ _ { b . b ) ^ j  . (A 18)

The variational derivatives of H  are defined in the weak sense in these inner 
products by

— , r \  =  lim -  (H(q + sr.b) — H(q, b)) = { f . r ) v . V r e T , (A 19)
8q /  v ?-o e ' '

—  . a )  =  lim -  (H(q,b + sa) — H(q.b)) = ( - ^ f b . a )  , Va g C. (A 20)
Sb / c * -°e  \ N f  /  c

i.e.
S H 8H 1

-  =  ^ -  (A 21)8q ' 8b N f
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Next, we define a composite space G = V  x C. A  vector g  e G takes the form

g = (A 22)

where gv g  V  and gc g  C. We also define a joint inner product on G,

«g. A» =  {gv h v)v + (Sc-hc)c- 
and the variational derivative

/ 8 H \

(A 23)

<5iï Sgv 
8H

\ W c J
We approximate the structure operator (A4) using our finite difference matrices:

(A 24)

J  = —N j  eos 9
0

m [ d xz x

DjMz
0

+  Nj  sin 9
0

MjDz

-d I m xz x 
0

(A 25)

Note that J  is skew-symmetric with respect to ((•, •))•
Choosing g =  (q.b), the Hamiltonian semi-discretization of the Euler-Boussinesq 

equations can now be defined by

àg
d t

8H
I— , (A 26)

or, in terms of q, b and f ,  

dq
—  = DTM b eos 9 -  DlMxb sin 7, 
df

^  =  -N](M¡Dxf  eos 9 -  MID ]

( A l l )

sin 0), (A 28)

q = —L f .  (A 29)

By construction the discrete total energy H  is a first integral of the semi­
discretization. Moreover, this system of ODEs is reversible and symplectic.

A.3. Time integration
We have shown that semi-discrete Euler-Boussinesq equations (A 27)-(A 29) constitute 
a time-reversible Hamiltonian system. We solve the Hamiltonian system in time with 
the symmetric and symplectic Störmer-Verlet method (Leimkuhler & Reich 2004; 
Hairer et al. 2006),

r - - - - - -  - - - - -  - ” • -  (A30)q«+1 / 2  =  q n + - ( D ]xM b1 eos9  -  D Mxb‘ sin0),

i• n + l / 2     » — 1 _ n  +  l / 2=  —L q n

b n + i  = b n _  11+1,2 eos 9  -  m I d

q n + 1 =  q n + 1 /2  +  ( D T M ¡ ; é B + l  ^  Q  _  f j T M  J)

^ - / ,î+1/2 sinô), 

n+1 sinô),

(A 31) 

(A 32)

(A 33)

such that the Hamiltonian function (A 18) will be conserved in time up to small 
fluctuations of second-order amplitude. The method requires the solution of the
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Poisson equation once per time step, but is otherwise explicit. We solve the Poisson 
equation efficiently using a fast Poisson solver. The overall method is second-order 
in space and time. Sparse discretization in space combined with a fast Poisson solver 
allows us to compute efficiently at high spatial resolution.

A ppendix B. N orm al-m ode decom position of discretized linear in ternal waves
We next consider the discrete model (3.4)—(3.5) with parametric forcing, written in 

terms of the stream function ifr e and buoyancy h e M/V:

— L 0

0 TTT̂iVNr

where N = NXNZ, M = (Nx — l)(Nz — 1), L e ’

0
K'

a(t)K
0

( B Í )

M  :is the discrete approximation of the
Laplacian (A 15), K g \ is a finite difference matrix

K = DtxMz eos e -  Dtz Mx sinö, (B 2)
and lN denotes the identity matrix on M.N. The matrix L is symmetric and negative 
definite, and hence possesses an orthogonal basis of eigenvectors, and we can write

MM—L = QDl Q , where Q Q = QQ = lM, O e  
matrix with positive entries. In matrix form we write

and Dl g r>MxM is a diagonal

~q d lq t O
5-

1 
1

d ( f \ _ 0 a(t)K
0 di - k t 0

We transform as follows,

' q d [/2 0 'd [,2q t 0
1 1

0 ——/jv 0 ——/jv
Nf  - Nf  -

a(t)K
0

q d l

0

-1/2 0
N f h

d [ o t 0
1

0 TT1»Nf

(B 3)

(B 4)

or, defining f  = DL Q lf  and b = b/Nf,

Now let C =  Nf DL Q K e : 
C is denoted by

= Nf
0

k ' q d l

a(t)DL1/2QT K
1/2 (B 5)

k  The singular value decomposition of the real matrix

where S e : IM and R  e

C = SÍ2Rt , (B 6)

are orthogonal matrices and f l  =  diagriv, coM) is
an matrix whose off-diagonals are zero and whose diagonal contains the M  real,
positive singular values of C. Hence (B 5) can be written as

0
—RÍ2tS t

a(t)SÍ2RT
0 (B 7)
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Transforming again with f  = S  f  and b = RTb yields the system of (forced) 
harmonic oscillators

0
— f f

a {t) Í2 
0

Expressed in terms of components, the above system becomes

u ~ 2 ~ ~
—  f t  = -a(f)ct)rf¡ + á(t)co¡b¡, i =  1 
ui

d2 ~ t
—  b¡ = -a(t)corbi, 
d t-

Ù ,  =  0.
d t2

. ,  Af, 

i = l  M,

i = M +  1 N.

(B 8)

(B 9) 

(B 10) 

( B l l )

To summarize, let X  = QDl1/2S  e M and V =  R/Nf  e M/V /V. The columns of X
and Y, denoted by (X i...........X M) and (F i ........YN), respectively, represent the normal
modes of f  and b. Then the normal mode decomposition

=  X f ,  b = Yb, (B 12)

yields a system of M  independent systems (B 9)-(B 10), plus the N  — M  trivial 
dynamics (B 11).

Remark. Note that if viscosity is included in the model, with viscosity parameter v, 
then (B 1 ) takes the form

- L  0

0 TT îv 
Nf

v L
K'

a(t)K
0

(B 13)

By inverting the matrix on the left, this system is again a linear non-autonomous 
differential equation of the form

%  =  A{t) f ' at
(B 14)

for some time-dependent matrix Ait). Even if Ait) can be diagonalized, the 
similarity transformation that achieves this will typically be local in time, A(t) = 
X{t)DA{t)X { t y l , and so one would not expect there to be a change of variables for 
which the dynamics decouples for all time. We can carry through the transformations 
used above in the inviscid case for (B 13), and (B 8) becomes

v S  Dl R a ( t ) 0  
—/ 2 T 0

(B 15)

where we observe that the oscillators have become fully coupled through the (viscous) 
diagonal term in general.
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