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Abstract

Numerical simulations of water flow and solute transport were used to investigate the effect of the recharge (rain/irrigation) at the 
soil surface on solute spreading and breakthrough in a realistic, three-dimensional, heterogeneous, vadose zone-groundwater flow 
system. Results of the analyses suggest that smaller recharge at the soil surface increases the relative variability in the response of the 
unsaturated flow system, decreases the groundwater recharge from the unsaturated zone, and, concurrently, decreases the degree of 
nonuniformity of the groundwater flow. Consequently, smaller recharge at the soil surface enhances the longitudinal and, especially 
the transverse spreading of the solute plume and increases the spreading of the expected solute BTC at the lower boundary of the 
unsaturated zone. Furthermore, smaller recharge at the soil surface decreases the extent of the vertical penetration of the solute 
plume into the groundwater, slows the peak arrival of the expected BTC, and considerably increases the spreading of the expected 
solute BTC at a given vertical control plane in the saturated region. It was shown that for the combined flow system considered here 
in which the solute plume is displaced to a sufficiently large vertical distance from the inlet zone at the soil surface, the variable that 
controls the transport is the cumulative recharge at the soil surface, and not the recharge rate. © 2000 Elsevier Science Ltd. All 
rights reserved.

1. Introduction

Groundwater contamination may often originate in 
contamination sources which are located at or near the 
soil surface, such as agricultural fields, waste deposits or 
accidental spills. Quantitative descriptions of chemical 
transport in the subsurface are essential for the m an­
agement of potentially hazardous chemicals with the 
aim of minimizing the potential of the drainage water to 
pollute underlying groundwater supplies. For reliability, 
such a description must include a realistic representation 
of the subsurface. The transport domain of interest in 
these cases is the combined vadose zone-groundwater 
system. Transport starts in the vadose zone, which has 
unique physical and chemical aspects. The vadose zone 
then acts as a source of water and solute for the trans­
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port processes in the saturated zone. A combined ap­
proach to solute-transport modeling is needed, which 
accounts for the processes unique to each of the sub­
systems, and at the same time properly models the mass 
transfer between the two subregions.

It is a common tenet nowadays that at the field scale, 
solute transport processes in the vadose zone as well as 
in the groundwater are considerably affected by the 
heterogeneity of the hydraulic properties of the porous 
formation. N atural soils exhibit a spatial heterogeneity 
([27,36,46^18], among others) that is generally irregular, 
and is characterized by length scales which in many 
cases, prohibit the use of effective, or average par­
ameters, particularly for the prediction of transport. 
This heterogeneity strongly affects the spatial distribu­
tion of solutes as has been observed in field experiments 
[5,19,39,51] and demonstrated by simulations [38,40,49, 
50,56] of solute transport in unsaturated, heterogeneous 
soils.

Similar findings concerning heterogeneity and spatial 
variability in aquifers have also been reported [11,26,23]. 
Field experiments [20,21,25,34] demonstrated the pro­
found effect of these heterogeneities on contaminant
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transport and highlighted the need to account for these 
effects in any realistic modeling effort.

The spatial variability in formation properties and its 
effect on solute transport, and the paucity of measure­
ments that are available for site characterization, has led 
to a concerted effort to develop theories of flow and 
transport based on stochastic concepts. The rationale 
for using stochastic concepts is that they enable media 
heterogeneity and data uncertainty to be treated quan­
titatively. Published treatments focus either on the sat­
urated zone [8-10,12,22,35] or on the vadose zone 
[2,4,14,16,17,28,29,41-45,52], but very little has been 
done to develop an integrated modeling approach for 
these two subregions. For example, Destouni and G ra­
ham [18] studied solute transport through a combined 
soil groundwater system by using the Lagrangian ap­
proach of Dagan et al. [15]. Their approach is restricted 
by several simplifying assumptions regarding the statis­
tics and the structure of the formation heterogeneity, the 
local flow regime and the local unsaturated conductivity. 
Most significantly, their approach is formulated for 
steady water flow, which is the exception rather than the 
rule in the vadose zone.

The general objective of the present study is to in­
vestigate field-scale transport in a three-dimensional (3- 
D), heterogeneous, combined vadose zone-groundwater 
flow system by means of a numerical approach. The aim 
is to improve our understanding of processes involved 
in field-scale transport in such a flow system. Specifically, 
the investigation will focus on the effect of the recharge 
(rain/irrigation) at the soil surface on the flow and the 
transport of a tracer solute in a vadose zone-ground­
water flow system. To do so, we will combine a statis­
tical generation method for producing realizations of 
heterogeneous formation properties in sufficient resolu­
tion, with an efficient numerical method for solving the 
partial differential equations governing flow and trans­
port in such a flow system. The present study is a nu­
merical experiment that provides detailed information 
on the consequences of the spatial heterogeneity of 
formation properties for the transport of solutes under 
realistic conditions. At the price of reduced generality, 
it circumvents most of the stringent assumptions of 
theoretical studies and facilitates analysis of simplified, 
yet realistic, situations at a fraction of the cost of 
physical experiments.

2. Theoretical considerations

2.1. Simulation o f  transport in a combined vadose zone- 
groundwater system

3-D flow domain that spans a considerable distance in 
both horizontal and vertical directions, and will analyze 
the transport problem by means of physically based flow 
and transport models and a stochastic presentation of 
formation properties that affect water flow and solute 
transport. The approach used here is a “single realiza­
tion” approach [1,37,40,49,50,56], that may be under­
stood as quantifying the macroscopic spreading of a 
single plume for particular site-specific applications. 
This spreading should be distinguished from the en­
semble macrodispersive flux that accounts for differ­
ences among the trajectories of random concentration 
replicates over the ensemble [53]. Note that if the solute 
inlet zone is sufficiently large to ensure ergodicity, the 
discrepancy between single-realization statistics and 
ensemble mean statistics might be reduced significantly 
[13].

2.2. Governing partial differential equations

We assume here that the water flow is described lo­
cally by Richards equation, the physical parameters of 
which are visualized as realizations of stationary ran­
dom space functions (RSFs). It is further assumed that 
the transport of the passive solute is described locally by 
a convection-dispersion equation (CDE).

In a Cartesian coordinate system (x i , x 2, v3), where x¡ 
is directed vertically downwards, assuming local isot­
ropy and in the absence of sinks or sources, the “mixed” 
form of the Richards equation, governing saturated- 
unsaturated flow, and the CDE governing the transport 
of a passive solute are

0 0 _ _ 0_ 
dt dx¡

and

6 (0c) 
dt

dx.
dK
dxi

_0_

dx: 0D.
de

lJd^j
d(u¡0c)

dxi

( 1)

(2)

respectively, where i , j  = 1,2,3 and summation over 
repeated indices is implied in (1) and elsewhere, t is the 
time, f  =  iJ/(x, t) the pressure head, 6 = 6(x, t) the vol­
umetric water content, K  = K(f/,x)  the hydraulic con­
ductivity, c the resident solute concentration, expressed 
as mass per unit volume of soil solution, u¡ the compo­
nents of the velocity vector, and D¡j are the components 
of the pore-scale dispersion tensor. When molecular 
diffusion is small enough to be excluded from the anal­
ysis, D¡j are given [3] as

D„ 2 t \u \ Óí j  +  ( 2 l  -  X T ) u ¡ U j / \ u \ (3)

Our purpose here is to simulate, on the field scale, the 
transport of passive water-borne solutes in a combined 
vadose zone-groundwater flow system. We consider a

where AL and AT are the longitudinal and the transverse 
pore-scale dispersivities, ó¡j the Kronecker delta, and
\ u \  =  (Mj +  u \  +
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Table 1
Statistical parameters of the spatially variable soil properties log i f ,  loga, n, 0S and 0ra

Parameter\soil property log i f loga n 0s 0r

Mean, ¡ip -0.44 -0.32 2.00 0.40 0.10
Variance, <jp 0.91 0.63 0.04 6x l 0-4 4 x l 0 -4

Correlation scales
Vertical, lp\ (m) 0.20 0.15 0.10 0.20 0.20
Horizontal, Ip2, Ip3 (m) 1.00 0.33 0.25 0.50 0.50

a Ks is given in m/d and a in m 1.

2.3. Characterization o f  the flow and transport par­
ameters

The formation hydraulic properties, characterized by 
the if(\f) and the 0(\f) relationships, are hypothesized to 
control the field-scale solute spread. These formation 
properties are continuous functions of the spatial coor­
dinates but vary in space in an irregular fashion. The 
length scales of these variations are much greater than 
the pore scale. The elementary volume (REV) repre­
senting the hydraulic properties of the heterogeneous 
formation is characterized by a macroscopic scale that is 
small in comparison with the scale of the field hetero­
geneities, but contains many pores. Our main concern is 
the effect of spatial variations of the hydraulic properties 
on solute transport. Therefore, deterministic, constant 
values were adopted for pore-scale dispersivities: /lL =  
2 X 10~3 m and 2T =  1 x  10~4 m.

To simplify the analysis, it is assumed that the local 
K(\f) and 0(\f) relationships are described by the van 
Genuchten [57] parametric expressions. Ignoring hys­
teresis and local anisotropy, and considering the pres­
sure head, as the dependent variable, they read:

( \ w(i)

\  1 +  [a(x)|i/r|]"(ï)

K(f/,x)

(4)

where 0  = (0 — 0r) / ( 0s — 0r) is the effective water satu­
ration, 0S and 0r the saturated and residual water con­
tents, respectively, ifs the saturated conductivity, a and 
m  the parameters which are related to the formation 
pore size distribution, and n =  1/(1 — m).

It is assumed further that each parameter in (4), de­
noted by p(x), is a second-order stationary, statistically 
anisotropic random space function (RSF). They are 
completely characterized by a constant mean, (p(x)), 
which is independent of the spatial position, and a co- 
variance, Cpp( x , f )  that, in turn, depends on the sep­
aration vector, ¿ =  X — x' and not on x and x'

individually. A 3-D, exponential covariance is adopted 
here for p(x), i.e.

Cpp(D =  ^  exp [-<*'], (5)

where f  =  (x — x?)/Ip is the scaled separation vector, 
f  = \ f \ ,  a2p and l p = (Ipi,Ip2,Ipî) are the variance and 
correlation scales of p(x), respectively. In line with field 
studies [6,48,54] axisymmetric anisotropy is adopted for 
Cpp(f). That is, Ipy=Ipi and IPh = Ip2 = IP3 are the 
characteristic length scales of p(x) in the vertical direc­
tion, and in the horizontal plane, respectively. Statistical 
properties of the various formation parameters of (4) 
were derived from measurements in the Bet Dagan 
trench [46] and are summarized in Table 1.

2.4. Generation o f  the flow and transport parameters field

With a single realization approach, inference of sta­
tistical moments of the distribution of relevant flow- 
attributed variables requires a flow domain that is 
sufficiently large compared with the correlation scales of 
the pertinent formation properties. In addition, in order 
to preserve details of the spatial structure of the for­
mation properties, the size of the numerical cells must be 
small compared with the characteristic length scale of 
the heterogeneity of the relevant formation properties.

We considered a flow domain of 12 m in the x\ ver­
tical direction, and 25 and 10 m in the x2 and the x3 
horizontal directions, respectively. This provided a flow 
domain spanning 50, 25 and 10 correlation length scales 
of log ifs in the respective directions. Based on the cri­
terion of at least four nodes per correlation length 
suggested by Ababou [1], the flow domain was discret­
ized into a large number of equalized cells, measuring
0.05 and 0.25 m in the vertical and horizontal directions, 
respectively. This provided four nodes per correlation 
length scale of log ifs, but smaller number of nodes per 
correlation length scale in the case of the other input 
formation parameters (Table 1). Note that the correlation 
scale of log-unsaturated conductivity, log if, may be 
smaller than that of log K, [29]. Consequently, the 
aforementioned discretization of the flow domain may 
not meet the criterion of four nodes per correlation 
length of log if. This subject, however, was not 
addressed here and is left for future investigation.
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The covariance function (5) and the values of a2p,Ipii 
and IPy (Table 1) were used in applying the turning 
bands method [55] to generate independent realizations 
of logKs, loga, n, 0S and 0r for each of the 
100 x 40 x 200 cells of the flow domain. By means of 
(4), 2-D tables of relative conductivity, K Td = K /K s and 
relative water content, ffü =  (0 — 0r) / ( 0s — 0r) were 
constructed as functions of a] =  (i — l)<5a and nt = 
1.1 +  (I — 1)<5„, where a' =  oc\i¡/\, i = 1 to Na, I  = 1 to 
N n, Na =  50000, N„ =  80, =  0.01 and <5„ =  0.05. A
bilinear interpolation scheme was used in applying these 
tables to calculate values of K T and 0 =  0r(0s — 0r) +  0S 
for each cell of the flow domain by means of the gen­
erated realizations of a, n, 0S and 0r and the simulated 
water pressure head, \j/. Hydraulic conductivity between 
cells, the so-called interblock conductivity, was esti­
mated from the generated realization of Ks and the 
calculated K \  by means of a modified version of the 
asymptotic weighting (AW) scheme proposed by Zaidel 
and Russo [60]. In this modification, in the vicinity of 
the water table, the interblock relative conductivity in 
the vertical direction for the capillary interblock term, 
ki- capillary, was approximated by its counterpart for 
the gravity interblock term, k\- gravity. The latter was 
calculated by a modified scheme that is more accurate 
than the upstream weighting scheme and more stable 
than the arithmetic mean scheme (i.e., this scheme does 
not create oscillations for gravity-dominated flow).

2.5. Boundary and initial conditions

For the analyses presented here, we considered the 
movement of a passive solute in a flow domain, Q, which 
comprised an initially solute-free porous formation with 
initially hydrostatic distribution of pressure heads, i.e., 
iJ/i(xi,x2,x3) = x¡ — C(x2,x3), where £(*2,*3) is the initial 
depth to the water table. The mean, steady-state, 
groundwater flow is assumed to be unidirectional, par­
allel to the x2-axis. Consequently, the water table is 
initially inclined from x2 = 0 to x2 = L2. No flow con­
ditions are assumed for the lower boundary of the 
modeling domain located at x¡ = L\ (i.e., the bottom  of 
the aquifer), and for the x3 =  0 and x3 =  L3 boundaries, 
which are parallel to the mean regional flow direction. 
Above the water table, no flow conditions are assumed 
for the x2 =  0 and x2 =  L2 boundaries. Below the water 
table, fixed pressure heads, i¡/hl(l = Q,L) are specified 
along the x2 =  0 and x2 =  L2 boundaries. These heads 
are calculated on the basis of the specified depth to the 
water table along the vertical boundaries and the hy­
drostatic assumption.

Water flow in the unsaturated zone is originated from 
a periodic potential flux, F(tj), imposed on the entire soil 
surface located at x¡ =  0. The potential flux is given by 
F(tj) = RI(x2,x3), t j < t j < t " ,  F(tj) = 0, elsewhere, 
where RI(x2,x3) >  0 is the spatially variable rain/irri­

gation intensity, j  =  1 to N \, and N \ is the number of  the 
irrigation/rain events. F or  the flow, the appropriate 
boundary  and initial conditions are:

+  ) ^ F ( t ) ,  x i =  0, ( K x 2 < T 2,

0 < x 3< Z 3, t >  0, (6a)

i r— =  0, x i = T i ,  0 < x 2 < Z 2, 0 < x 3< Z 3, t >  0,
OXj

(6b)

- K ('l/ ) p - =  * 2  =  0, X2 = L 2, 0 < x j  < ( ( x 2,x3),
OX2

0 < x 3< Z 3, t >  0, (6c)

ll/  =  ll/ bh * 2  =  0, X2 = L 2, C(x2,x3) < x j
( K  x3 < z 3, t >  0, (6d)

- ^ ( i A ) ^ - = 0 ,  x3 =  0, x3 =  L 3, O ^ x i ^ L i ,

0 < x 2 < Z 2, t >  0, (6e)

I/t = x ¡  -  C(x2,x3), O ^ x^ Í ! ,  0 < x 2 < ¿ 2,
0 ^ x3^ T 3, t =  0. (6f)

For the transport, we considered a case in which a solute 
with concentration, c0, invades the soil during time, 
10 via a planar source of dimensions (p22 — p2i) x 
(p32 — p31) located at the soil surface (x¡ =  0), which is 
orthogonal to the vertical mean flow direction. There is 
no solute transport across the soil surface outside the 
source, nor across the vertical planes located at x2 =  0 
and x2 =  L2 above the water table, nor across the ver­
tical planes located at x3 =  0 and x3 =  L3, for which the 
normal derivatives of c vanish. A zero-gradient-bound- 
ary is also specified at the bottom (x3 =  ¿i). Note that 
the solute flux across the vertical planes located at x2 =  0 
and x2 =  L2 below the water table does not vanish be­
cause of the convective flux of the solute, u2dc(u2 ^  0). 
For the transport, therefore, the appropriate boundary 
and initial conditions are:

ôc
-0Di j  —  +  uiQc =  F(t )c0, 0 í ¡ t £ ¡ t 0,

de
— 9 D \ j - — h«i0c =  O, t >  to

J dxj

* 1 = 0 ,  p21< x 2 < p 22, p 31s£x3< p 32, (7a)

ôc
-ODij------h«i0c  =  O, xi =  0,

J dxj

P21 s* *2 Sí p22, p31 ^  X3 ^  p32, t > 0 (7b)
ôc

—O D ij------h« i0c  =  O, x \ = L \ ,
0x2

0 ^ x 2 ^ T 2, 0 ^ x 3^ T 3, t >  0 (7c)
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0c
—0-D2/^----0 w20c =  0, x2 =  0 , x2 =  //2,

] dxj
O ^ x i^ Z /i, 0 ^ x 3 ^  ¿ 3, t >  0

0C
- d D i j - --------h M3 0 C =  O, X 3 =  O,  X3 = ¿ 3 ,

J dxj
O ^ x i^ Z /i, 0 ^ x 2^ L 2, i > 0

C =  O,  O s ^ X j í ^ Í ! ,  0 < X 2 < ¿ 2 , 

0<X 3< ¿3, i =  0.

(7d)

(7e)

(7f)

2.6. Implementation

We applied Eqs. (1) and (2), subject to (6a) (6f) and 
Eqs. (7a)-(7f), respectively, to investigate the transport 
of a passive dissolved solute (chloride) in a combined 
vadose zone-groundwater flow system. The mixed form 
of Richards’ equation governing 3-D water flow (Eq. 
(1)) was approximated by a fully implicit Euler scheme 
with a truncation error of 0(At, Ax3, Ax\, Ax3). This 
scheme is convergent and unconditionally stable for the 
linear diffusion equation. The resulting system of non­
linear algebraic equations with respect to the pressure 
head, ij/ is solved by iterative means, applying the so- 
called modified Picard method [7]. Picard (external) it­
erations are applied for both capillary and gravity terms, 
and the resulting system of linear algebraic equations is 
solved by line successive overrelaxation (LSOR) (inner) 
iterations [24].

For each time-step, At the CDE ((2)) governing solute 
transport in a 3-D flow domain was approximated by an 
operator-splitting approach [31,58]. Under this ap­
proach, during the first stage of computation, only the 
advective part of the equation is solved over the time 
interval At. During the second stage, the solution ob­
tained in the first stage becomes the initial condition for 
solving a pure dispersion equation over the same At. A 
numerical solution of the advection equation was ob­
tained by means of a second-order accurate, explicit fi­
nite difference scheme proposed by Zaidel and Levi [59], 
while dispersive fluxes were approximated by a standard 
central difference scheme. For more details, see the 
appendix in [49].

Solute transport was simulated for four different 
irrigation/rain intensities, RI(x2,x3). Assuming that 
RI(x2, x 3 ) is log-normally distributed, values of RI(x2, x3) 
on each of the grid nodes at the soil surface were gen­
erated from RI(x2,x3) =  exp[/xlog(RI) +  <xiog(Ri)RN(x2,x3), 
where At iog (Rï) and ffiog(Ri) are the mean and the standard 
deviation of log(RI) and R \  is a random number taken 
from the normal distribution N (0 ,1). The mean, //[RI] 
and the standard deviation, a [RI] of the four rain/irri­
gation intensities were //[RI] =  0.048, 0.072, 0.120 
and 0.240 m/d, and cr[RI] =  0.016, 0.024, 0.040 and

0.080 m/d, respectively. To match the behavior of actual 
rain/irrigation events, both the duration of such an 
event, t" — tl, and the time interval between successive 
events, tl — t"_x, were taken as time-dependent, ranging 
from 0.2 to 0.5 d and from 7 to 28 d, respectively. The 
same temporal distribution of t" — tl and tl — t"_x was 
adopted for the four different rain/irrigation intensities. 
Consequently, for a given elapsed time, t, the cumulative 
amounts of rain/irrigation water for //[RI] =  0.072, 0.120 
and 0.240 m/d were equal to 1.5, 2.5 and 5 times, re­
spectively, the cumulative amount of rain/irrigation 
water for //[RI] =  0.048 m/d.

It is important to separate between the effect of the 
rain/irrigation intensity and the effect of the cumulative 
amount of rain/irrigation on the response of the inte­
grated flow domain. To do so, solute transport was 
simulated also for the high rain/irrigation intensity, i.e., 
//[RI] =  0.240 m/d and cr[RI] =  0.080 m/d, using a 
modified temporal distribution of t" — tl and tl — t'j_x. In 
this modification, the duration of each of the rain/irri­
gation events, t" — tl, was multiplied by a factor of 0.3, 
and the time interval between successive events, tl — tj_x, 
was changed accordingly. In other words, for a given 
elapsed time, the cumulative amount of rain/irrigation 
water associated with the latter case equaled the cumu­
lative amount of rain/irrigation water associated with 
//[RI] =  0.072 m/d, cr[RI] =  0.024 m/d and the original 
temporal distribution of t" — tl and tl — t"_x.

The movement of a chloride pulse was simulated for 
L\ = 12 m, L2 = 25 m, L2 = 10 m, p21 =  5 m, p22 = 15 m, 
p31 =  1 m and p32 =  9 m, and c0 =  1 kg/m3. The total 
mass of solute entering the flow domain via the inlet 
zone at X] =  0 during a pulse of t0, is given as

Mn *5i(0,x2,x3, t) dx2dx3 dt, (8)

where the solute influx, ,q, is given as

0c
si(0 ,x2,x3,i)

P2l ^ x2 ^ P 22, P l l ^ x3^Pl2-

0D11- ---- h uiQcq, Xi = 0,
OX]

(9)

With t0 = 0.45, 0.30, 0.18 and 0.09 d, for E[RI] =  0.048, 
0.072, 0.12 and 0.24 m/d, respectively, M 0 was kept the 
same (1.3 kg) for all four cases. The flow and transport 
simulations proceeded until a solute breakthrough was 
completed at a vertical control plane (CP) located below 
the water table at the outlet (x2 =  L2). This occurred 
after 720, 550, 350 and 200 d for the four different rain/ 
irrigation intensities, respectively. The respective cumu­
lative amounts of rain/irrigation water were 1.20, 1.34, 
1.43 and 1.64 m of water. Regarding the numerical so­
lution statistics, the mean time step, At was 0.002<i 
(Atmin =  0.000Id  and Atmax =  0.01 d) while the average 
numbers of Picard external iterations and of LSOR in­
ner iterations per time step, were 8 and 35, respectively.
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3. Results and discussion

3.1. The velocity field

At the field scale, the movement and spreading of 
nonreactive solutes in the combined flow system are 
determined mainly by the velocity vector, u(x\ t). In turn, 
u(x;t) is controlled by inherent properties of the for­
mation (e.g., saturated hydraulic conductivity, and pa­
rameters which relate the unsaturated conductivity, K , 
to the water saturation, 0),  by flow-controlled attributes 
(e.g., pressure head, i//(0)), and by the boundary con­
ditions imposed on the flow domain.

Vertical cross-sections (at x3 =  5 m) of the 3-D ve­
locity fields associated with the various rain/irrigation 
intensities before and after an irrigation event are de­
picted in Figs. 1 and 2, respectively, as patterns of ar­
rows representing the velocity vectors. In these figures, 
the direction of the arrow is equal to the direction of the 
vector field at its base point, while the magnitude of the 
arrow is proportional to the magnitude of the vector 
field. During the redistribution stage (Fig. 1), a 3-D, 
rather complex velocity field is developed in the unsat­
urated zone. In this case the velocity fields associated 
with the different rain/irrigation intensities are quite 
similar. Notable is the upward flow in some locations in 
the upper part of the soil profile (Fig. 1). It stems from 
the inherent heterogeneity in the soil hydraulic proper­
ties and the change in the sign of the longitudinal 
component of the head gradient in the upper part of the 
soil profile as water content decreases. On the other 
hand, at the end of the infiltration stage (Fig. 2), the 
velocity fields associated with the different rain/irriga­
tion intensities are quite different. After an irrigation/ 
rain event, the flow in the upper part of the unsaturated

zone is essentially unidirectional vertical, with small lo­
cal deviations. Note that as the rain/irrigation intensity 
increases, the unidirectional vertical pattern of the ve­
locity field persists to a larger soil depth (Fig. 2).

The cumulative probability plots of the components 
of the velocity vector u =  (wi,w2,w3) at the water table, 
x\ =  C(x2,x3), (Fig. 3), provide additional insight into 
the effect of the conditions at the soil surface on the 
velocity field. Fig. 3 shows that the effect of the recharge 
at the soil surface on the velocity, particularly on its 
vertical component, u\, is significant during and imme­
diately after a rain/irrigation event (Figs. 3(a), (c) and 
(e)) and may persist to relatively large vertical distances 
(x\ =  6 m). On the other hand, during extended redis­
tribution periods, the velocity is essentially insensitive to 
the recharge at the soil surface (Figs. 3(b), (d) and (f)).

The mean and standard deviation of ui(x), obtained 
by averaging ufix) at the water table (x\ =  £(x3,x3)), 
over the transverse direction, (0 ^ x 3 ^ T 3), and those of 
u2(x), obtained by averaging u2(x) over the vertical x \ x 2- 
plane in the saturated zone (i.e., £(*25*3) ^ x \  0 ^
x3 ^ T 3)), as functions of x2 are depicted in Fig. 4. As 
expected, the mean of the vertical component of the 
velocity (u\(x2;xi =  £,t)) (Fig. 4(a)) increases with 
increasing recharge at the soil surface. On the other 
hand, the respective standard deviations (Fig. 4(b)) are 
quite similar. The positive recharge from the unsatu­
rated zone (i.e., u\(x2\x\ =  £,t) > 0) resulted in a non- 
uniform mean flow in the saturated zone, i.e., the mean 
velocity in the saturated zone,(i/2(x2; t)) (Fig. 4(c)) varies 
linearly in the x2 direction as (u2(x2; t)) =  [1 +  
ß(x2 —xq)](u2(x2 = x 0-t)}, in which x0 =  0. Application 
of a linear regression analysis to the simulated data 
of (k2(jc2;0> yields ß =  0.00347, 0.00467, 0.00529 
and 0.00748 m -1 (and coefficients of determination,

Horizontal Distance (m)
Fig. 1. Velocity fields in the vertical xix2-plane at x3 =  10 m, just before a rain/irrigation event for four different recharge rates at the soil surface: 
IR =  0.048 m/d (a); IR =  0.072 m/d (b); IR =  0.120 m/d (c); and IR =  0.240 m/d (d).
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25 0

Horizontal Distance (m)
Fig. 2. Velocity fields in the vertical x\ x2-plane at x3 =  10 m, just after a rain/irrigation event for four different recharge rates at the soil surface: 
IR =  0.048 m/d (a); IR =  0.072 m/d (b); IR =  0.120 m/d (c); and IR =  0.240 m/d (d).
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Fig. 3. Cumulative probability plots of u\ (a), (b), u2 (c), (d), and u2 
(e), (f) at the water table (xi =  Ç(x2,x3)), associated with the different 
recharge rates at the soil surface. Note that (a), (c) and (e) correspond 
to the time just before an irrigation, while (b), (d) and (f) correspond to 
the time at which the irrigation ceases.

r2 =  0.977, 0.987, 0.981 and 0.985), for E[RI] =  0.048, 
0.072, 0.120 and 0.240 m/d, respectively. Fig. 4(c) clearly 
demonstrates that the degree of nonuniformity in the
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(xi =  C(x2,x3)) obtained by averaging u\ along the x3-axis, and mean 
(b) and standard deviation (d) of u2, obtained by averaging u2 over the 
vertical xix3 -plane in the saturated zone, associated with the four 
different recharge rates, as functions of horizontal distance.

mean flow in the saturated zone increases with increas­
ing recharge at the soil surface.

Figs. 1-4 clearly demonstrate the effect of the re­
charge at the soil surface on the velocity field of the 
combined flow system. The implications for transport 
will be discussed in the following sections.

3.2. Displacement and spreading o f  solute concentration

The solute-spreading associated with the various re­
charges at the soil surface are illustrated in Fig. 5. This 
figure displays contour lines of the simulated solute 
resident concentrations, c, in the vertical cross-section of 
the heterogeneous soil (located at x3 =  5 m), obtained
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Fig. 5. Contours of the simulated solute concentrations in a vertical x\ 
x2-plane at x3 =  10 m, associated with four different recharge rates at 
the soil surface: IR =  0.048 m/d (a); IR =  0.072 m/d (b); IR =  0.120 ml 
d (c); and IR =  0.240 m/d (d). Results are depicted for travel distance 
of = 4  m. The darkest shaded contour corresponds to 0.05 of mean 
concentration,(c(x; t)), and contour increment is 0.10(c(x; t)).

from the solution of (1) subject to (6a)-(6f) and the 
solution of (2) subject to (7a)-(7f). Note that the center 
of mass of each of the plumes in Fig. 5 has traveled a 
vertical distance of 4 m. The irregular, ostensibly erratic, 
spatial variation of c shown in Fig. 5 is attributed to the 
small-scale variability in the hydraulic properties of the 
heterogeneous formation. For a given displacement of 
the plume’s center of mass, the plume spreading in the 
vertical direction, and, concurrently, the penetration of 
the plume into the groundwater increase with decreasing 
recharge at the soil surface. When the plume invades the 
groundwater (Figs. 5(a) and (b)), it exhibits a significant 
spreading in the horizontal direction along the x2-axis, 
with its accompanying dilution. As was shown in earlier 
analyses [41,49,50], the greater solute spreading in the 
unsaturated zone associated with decreasing recharge at 
the soil surface, stems from the decrease in water satu­
ration and, concurrently, the increase in the relative 
variability in the response of the flow domain, as the 
recharge at the soil surface decreases.

The solute plumes in Fig. 5 are quantified here in 
terms of the spatial moments of the distribution of the 
solute resident concentration, c given [13] as

M{t) =  J  0(x,t)c(x,t) dx, (10a)

/  0(x, t)c(x, t)x dx, (10b)

s 'ij(.t) = t)c{x, t)[x¡ -  Ri{t)\ [Xj -  Rj(t)\ dx,

(10c)

where M  is the total mass of solute, R(t) =  (Ri,R2,R3) 
the coordinate of the centroid of the solute plume, and

S¡j(t) ( i j =  1,2,3) are second spatial moments, pro­
portional to the moments of inertia of the plume.

Note that under ergodic conditions for the spatial 
moments, assumed to prevail if the lateral extent of the 
entry zone is large enough, as compared with the scale of 
the formation heterogeneity in the horizontal direction, 
S ^ t )  =  -  S'j(0) «  0), where X ^ t;  0) ( i j  =
1,2,3) is the one-particle displacement covariance. 
Hence, under these conditions, the one-particle-trajec- 
tory statistical moments characterize the spatial mo­
ments of the solute plume.

The dependence of the longitudinal, R\, and trans­
verse, Rf (i =  2, 3) components of the coordinate of the 
centroid of the solute plume, R , upon time, t, until a 
solute discharge has been started at the outlet of the flow 
domain (located at x2 =  T2, 0 ^ x 3 ^ L 3, Ç(x2,x3) ^ x \  ^  
Li), is depicted in Fig. 6. As expected, the center of mass 
is displaced vertically in the direction of the mean flow, 
in a manner which is related to the recharge at the soil 
surface. The time fluctuations in R\ (Fig. 6), originating 
from the recharge cycles at the soil surface increase with 
increasing recharge at the soil surface. They are

"1 I I I T
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Fig. 6. Longitudinal (R\) and transverse (R2 and R3) components of 
the coordinate location of the solute center of mass (see (10b)) as 
functions of elapsed time, t, for four different recharge rates. Open 
circles denote results for RI =  0.240 m/d and the modified temporal 
distribution of the rain/irrigation cycles.
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smoothed out as time elapses and the center of mass of 
the plume is displaced to a sufficiently large vertical 
distance from the soil surface.

As time elapses and the solute plume invades the 
groundwater, the center of mass of the plume is shifted 
towards the direction of the mean head gradient along 
the x2-axis. Because the mean velocity in the saturated 
zone, (u2(x2]t)) (Fig. 4(c)) varies linearly in the x2 di­
rection, R 2 increases with time at a rate faster than lin­
early in t. Note that the change of R 2 with time increases 
with increasing recharge at the soil surface, while R 3 is 
essentially time-invariant, independent of the recharge 
at the soil surface.

Estimated values of the longitudinal, Sn  and the 
transverse, S22 and S22 components of the spatial co- 
variance tensor, S¡j{t) =  S¡j(t) -  S¡j(0) { i j  = 1,2,3) as 
functions of the travel distance of the center of mass, R\, 
are given in Fig. 7. Since the spatial covariance of 
the solute distribution is a measure of the spreading 
of the distribution about its center of mass, the changes 
in the covariance structure with travel distance may re­
flect the changes of the concentration distribution that 
occur because of the heterogeneity induced in the solute 
velocity field by small-scale heterogeneity in the soil 
hydraulic properties. For a given recharge at the 
soil surface, the longitudinal component, Sn,  depicted in 
Fig. 7, generally describes a transport process which is 
initially controlled by convection only (i.e., Sn  is in­
itially proportional to the square of the travel distance), 
and is then continuously changed to a convection-dis­
persion transport process (for which Sn  increases lin­
early with travel distance). The fluctuations in Sn  stem 
from the fluctuations in the downward displacement of 
the center of mass (Fig. 6), which, in turn, stem from the 
temporal variations of the recharge at the soil surface. 
The transverse components, S22 and S33, however, fluc­
tuate only slightly in time and do not approach the 
constant asymptotic values which characterize the con­
vection-dispersion transport process when the mean 
head gradient coincides with the longitudinal axis of the 
formation heterogeneity [13]. Instead, the evolution of 
S22 and S33 at a rate faster than linearly in R\, persists 
over longer travel distances, and their magnitudes are 
only slightly smaller than that of Sn- As the leading 
edge of the solute plume invades the groundwater and 
R 2 increases with time (Fig. 6), S22 increases rapidly with 
travel distance and its magnitude considerably exceeds 
that of Sn.

The relatively small disparity between the magnitudes 
of the longitudinal and the transverse components of the 
displacement covariance (Fig. 7) stems from the multi­
dimensionality of the flow variation (Figs. 1 and 2), and 
the resulting relatively small discrepancy between the 
magnitudes of the longitudinal and the transverse 
components of the velocity variance. During redistri­
bution periods, which, in turn, dominate the rain/irri-
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Fig. 7. Longitudinal (Su) and transverse (S22 and *S33) components of 
the spatial covariance tensor (see (10c)) as functions of travel distance, 
for four different recharge rates. Open circles denote results for 
RI =  0.240 m/d and the modified temporal distribution of the rain/ 
irrigation cycles.

gation cycles, the ratio between the transverse and the 
longitudinal components of the velocity variance, 
Ryy =  {uf) /  (uf ) (i =  2, 3) in the unsaturated region may 
approach unity throughout most of this region. The 
relatively large value of Ryy in the unsaturated zone is 
shown to increase the lateral mixing of the solute, ef­
fectively smoothing out the extremes in solute convec­
tion, to slow down the plume spreading in the 
longitudinal direction and, at the same time, to accel­
erate its spreading in the transverse directions.

For a given displacement of the solute plume’s 
center of mass, the spreading of the plume increases 
with decreasing recharge at the soil surface, and, con­
currently, with decreasing degree of saturation in the 
unsaturated zone. This result is in qualitative agree­
ment with the results of first-order analysis of transport 
under steady-state unsaturated flow [41], and numerical
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Fig. 8. Trajectories of the centers of mass of the solute plumes (a), and 
trajectories of the downstream boundary of the solute plumes (b), in 
the vertical x \x2'-plane, associated with four different recharge rates. 
Open circles denote results for RI =  0.240 m/d and the modified 
temporal distribution of the rain/irrigation cycles.

simulations of transport under transient, unsaturated 
flow [49,50].

Fig. 8 presents trajectories of the center of mass of the 
solute plumes, and trajectories of the downstream 
boundary of the solute plumes in the vertical x \x 2'-plane, 
associated with the different recharge rates. It is shown 
in Fig. 8(a) that the soil depth at which the trajectories 
of the center of mass of the solute plume start to deflect 
from the vertical xi-axis, increases with increasing 
recharge at the soil surface. On the other hand, the 
transverse crossing point of the downstream boundary 
of the solute plume and the water table (Fig. 8(b)) de­
creases with increasing recharge at the soil surface. 
These results stem from the fact that in the unsaturated 
zone, the disparity between the magnitude of the vertical 
component of the velocity vector, u\ and the magnitudes 
of its horizontal components, u2 and u2, increases with 
increasing recharge at the soil surface (Fig. 3).

3.3. Solute breakthrough

Solute breakthrough is calculated from the flux- 
averaged concentration, cf, defined [32] by cf =  
f  s - v d A / f  Ou'vdA,  where s and u are the solute flux 
and the velocity vectors, respectively, with s = s - v  and 
6u =  6u' V  being the mass of solute and the volume of 
water per unit time and unit area moving through a 
surface element of unit normal v, and water saturation, 6 
and the integration is over a planar area A.

Mean solute breakthrough curves (BTCs) at an hor­
izontal CP located at the water table (x\ =  6 m), and at a 
vertical CP located below the water table at the outlet 
(x2 =  25 m) are depicted in Figs. 9(a) and (b), re­
spectively. The expected flux concentrations, (cf(t)} in 
Fig. 9(a) were evaluated by averaging Cf over a time-
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Fig. 9. Expected flux concentration crossing control planes located at 
xi =  6 m in the unsaturated region (a), and at x2 =  25 m in the satu­
rated region (b), as functions of elapsed time, for four different 
recharge rates. Open circles denote results for RI =  0.240 m/d and the 
modified temporal distribution of the rain/irrigation cycles.

dependent horizontal region defined by the lateral 
spreading of the solute plume in the CPs located at the 
water table (x\ =  6 m). Similarly, the expected BTCs in 
Fig. 9(b) were obtained by averaging Cf over a vertical 
region defined by the vertical spreading of the solute 
plume in a given CP located below the water table at 
r 2 =  25 m (x2 =  L2).

The effect of the recharge at the soil surface on the 
expected BTCs in both the unsaturated and the satu­
rated regions is clearly demonstrated in Fig. 9. The 
expected solute BTCs exhibit larger peak, earlier peak 
arrival, and less spreading as the recharge at the soil 
surface increases. Notable are the smaller flux concen­
trations in the saturated region than in the unsaturated 
zone, due to subsequent spreading and dilution of the 
solute plume in the saturated region. Note also that the 
expected BTCs in the unsaturated region are more 
erratic than those in the saturated region. This is due to 
the more complex velocity field in the former region 
(Figs. 1 and 2).

The dimensionless BTCs, (C(T,L)), depicted in Fig. 
10, provide further insight on the effect of the recharge 
at the soil surface on the solute breakthrough in both
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Fig. 10. Scaled expected flux concentration crossing control planes 
located at x\ =  6 m in the unsaturated region (a), and at x2 =  25 m in 
the saturated region (b), as functions of scaled travel time, for four 
different recharge rates. Open circles denote results for RI =  0.240 m/d 
and the modified temporal distribution of the rain/irrigation cycles.

regions. Here (C(T;L) = (cf (T;L) ) / / 0°°(cf( r ;L)) d r ,  
T =  t(Vi)/L, L  is the distance to the CP, and V¡ (i = 1,2) 
are the vertical and the horizontal (parallel to the x 2- 
axis) components, respectively, of the effective solute 
velocity vector, V. The components of V are calculated 
as the time rate of change of the displacement of the 
solute plume center of mass, i.e.

V = [d R i /d t ,d R 2/d t ,d R 3/dt]T. (11)

Note that in the case of the unsaturated region, L =  x\. 
On the other hand, in the case of the saturated region, 
L = x2 — X, where % is the transverse crossing point of 
the down stream boundary of the solute plume and the 
water table (Fig. 8(b)).

The normalized BTCs at the bottom of the unsatu­
rated region (Fig. 10(a)) exhibit slightly earlier solute 
peak arrival and less spreading as the recharge at the 
soil surface increases. These results are in qualitative 
agreement with the results of first-order analysis of 
transport under steady-state, unsaturated flow [41], and 
numerical simulations of transport under transient,

unsaturated flow [49,50]. As was emphasized in the 
previous section, the results in Fig. 10(a) can be ex­
plained based on the effect of the recharge rate at the 
soil surface on water saturation, and, concurrently, on 
the relative variability in the response of the unsatu­
rated flow domain.

The normalized BTCs in the saturated region 
(Fig. 10(b)) exhibit considerable skewness that is char­
acterized by a delayed peak arrival, and by an exceed­
ingly long tailing. The effect of the recharge at the soil 
surface, and, concurrently, of the groundwater recharge 
from the unsaturated zone (Fig. 4(a)) and the nonuni­
formity of the groundwater flow (Fig. 4(c)), on the sol­
ute BTCs at x2 =  L2 is substantial. The expected solute 
BTCs exhibit larger peak, earlier peak arrival, and less 
spreading as the recharge at the soil surface increases. 
These results are in qualitative agreement with the re­
sults of the analytical study of Destouni and Graham 
[18]. Their results suggest that under nonuniform 
groundwater flow (ß > 0), the resultant nonstationary 
travel time probability density function (PDF), exhibits 
shorter travel times and less spreading than a stationary 
travel time PDF associated with uniform groundwater 
flow (ß =  0). In agreement with the results for the 
nonstationary travel time PDF, they found that the 
expected solute BTC exhibited earlier solute arrival and 
less spreading as ß increased.

Figs. 5-10 show that characteristics of the transport 
associated with E\R1] =  0.072 m/d, <r[RI] =  0.024 m/d 
and the original temporal distribution of t'j — and 
t'j — t"_v  and those associated with E[RI] =  0.240 m/d, 
cj[RI] =  0.080 m/d and the modified temporal distribu­
tion of t'j — t'j and t'j — t'j_x, are almost indistinguishable. 
This suggests that for the case in which the solute plume 
is displaced to a sufficiently large vertical distance from 
the inlet zone at the soil surface, the variable that controls 
the transport is the cumulative recharge at the soil sur­
face, CR(t) =  JtF(t') át' (F(t) =  RI, t' < t < f ,  F(t) =  0, 
elsewhere), and not the recharge rate, RI. Note that un­
like in steady-state, unsaturated flows in which 
CR =  RI/, in transient, unsaturated flows originating 
from a periodic recharge at the soil surface, CR is a 
function of both RI and the temporal distribution of the 
duration of a rain/irrigation event, t'j — tj, and the time 
interval between successive events, t'j — tr'_x.

4. Summary and concluding remarks

The main purpose of the present study was to in­
vestigate the field-scale transport of tracer solutes under 
realistic field conditions in a 3-D, heterogeneous, vdose 
zone-groundwater flow system. Detailed numerical 
simulations of the flow and the transport were employed 
in order to analyze solute spreading and breakthrough,
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taking into account different recharge rates at the soil 
surface. The results of this investigation are represented 
in Figs. 1-10. The main findings of the present paper 
may be summarized as follows:
1. For given spatial heterogeneity in the formation 

properties, the pattern of velocity field, and, conse­
quently, the spreading and the breakthrough of the 
solute pulse, are considerably affected by the recharge 
at the soil surface.

2. The realistic, periodic boundary conditions at the soil 
surface (i.e., F(t) =  RI, t' < t < t", F(t) =  0, else­
where), considered in this study, lead to periodicity 
in the response of the flow system which might persist 
to a relatively large soil depth.

3. Smaller recharge at the soil surface is shown to de­
crease the magnitude and persistence of the vertical 
component of the velocity field in the unsaturated 
zone. Consequently, smaller recharge at the soil sur­
face leads to a decrease in both the groundwater re­
charge from the unsaturated zone and the degree of 
nonuniformity of the groundwater flow.

4. Smaller recharge at the soil surface is shown to in­
crease both the longitudinal, and, especially, the 
transverse spreading of the solute plume, and to in­
crease the skewing of the expected solute BTC in 
the unsaturated region. Furthermore, smaller re­
charge at the soil surface decreases the extent of the 
vertical penetration of the solute plume into the 
groundwater, delays peak arrival and considerably 
increases the spreading of the expected solute BTC 
in the saturated region.

5. For the combined flow system considered here in 
which the solute plume is displaced to a sufficiently 
large vertical distance from the inlet zone at the soil 
surface, the variable that controls the transport is 
the cumulative recharge at the soil surface, and not 
the recharge rate.
We would like to emphasize that the numerical ex­

periments conducted in the present study provide de­
tailed information on the consequences of spatial 
heterogeneity of the soil properties for the transport of 
solutes under quite realistic conditions. Such informa­
tion cannot, in general, be obtained in practice from 
field investigations. We would like to stress, however, 
that the conclusions drawn from the present study 
should be considered with caution, in as much as the 
numerical results presented are based on analyses of 
single realizations of the formation properties. Results 
of recent analyses of transport under transient flow in a 
variably saturated, 3-D, heterogeneous formation [50], 
however, suggest that because of the relatively large 
lateral extent of the solute input zone, the simulated 
results might be sufficiently accurate to indicate appro­
priate trends.

Before concluding, we would like to stress that in our 
simulations we did not take into account the hysteresis

in the local ip-0  relations caused by contact angle, ir­
regular geometry and nonwetting fluid (air) entrapment 
effects, nor hysteresis in the local K -6  relations caused 
by air entrapment effects. Using 1-D column exper­
iments and simulations, Lenhard et al. [33] illustrated 
the importance of air entrapment and saturation hys­
teresis in the case of fluctuating water table conditions. 
On the other hand, using 1-D and 2-D simulations, 
Kaluarachchi and Parker [30] showed that both flux- 
controlled boundary conditions and heterogeneity in the 
formations properties may diminish the effects of hys­
teresis and air entrapment on infiltration and seepage. In 
as much as, in our simulations, water table fluctuations 
were negligibly small, we believe that the neglect of 
hysteresis in the local relations has only a small
effect on the response of our heterogeneous, combined 
unsaturated-saturated flow system.
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