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Abstract

Studying biochemical indicators in response to various environmental factors allows 
revealing the metabolic adaptive strategy of the organism’s tolerance and survival under 
a variety of environmental impacts. This review analyses both the authors’ own data and 
the available literature on the problem of biochemical adaptations of the lipid composi-
tion in marine bivalves, particularly blue mussels, Mytilus edulis L., to various environ-
mental impacts. Modifications in the composition of lipids and their fatty acids in blue 
mussels caused by short-term (under laboratory conditions) and chronic (field monitor-
ing) exposure to natural and human factors indicate that homeostasis is maintained in 
cell membranes and the organism’s energy requirements and facilitate the adaptation 
and tolerance of the mussels to environmental disturbances. The lipid and fatty acid com-
position indices in White Sea intertidal mussels which reflect their chronic exposure to a 
wide variety of environmental factors are discussed and compared to data on changes in 
the lipid composition of blue mussels exposed to some environmental factors (salinity, 
anoxia, metals) in aquarium experiments. The lipid profile plays an important role in 
the adaptation of blue mussels to new conditions in the habitat, and it can be used as a 
biochemical marker for indicating the organism’s physiological state.

Keywords: lipids, fatty acids, biochemical adaptation, environmental factors, Mytilus 
edulis

1. Introduction

Biochemical processes underlie the development of cell metabolic responses to environmental 
impacts and allow an organism to adapt and survive in a changing environment [1]. Metabolic 
modifications up to the level of physiological and morphological disorders are reflected in the 
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changes of various biochemical indicators, which allow determining the adaptive strategy of 
an organism’s tolerance and survival under both natural and human impacts. Lipid molecules, 
which are involved in all the essential physiological-biochemical processes [2], play a major role 
in the organism’s adaptive responses to various factors in the environment [1]. The primary 
response to stress is modification of the physical state of cell membranes (mainly fluidity), which 
triggers a change of their lipid and fatty acid composition [3, 4]. The main lipid components of 
biological membranes are phospholipids and cholesterol. The ratio of phospholipids and cho-
lesterol is considered as an indicator of membrane fluidity. Cholesterol is known to increase 
the order of the phospholipid fatty acid chains in membranes [5]. Membrane phospholipids in 
different molecular species and molecular shapes as well as their interaction with cholesterol 
and membrane proteins determine membrane fluidity and subsequently regulate the activity of 
membrane-bound enzymes and the functioning of ion channels, pumps and receptors [2, 6, 7].  
Besides their effects on membrane fluidity, membrane phospholipids are also a source of bioactive 
compounds and messengers [8]. In particular, eicosapentaenoic acid (EPA, 20:5n-3) and arachi-
donic acid (AA, 20:4n-6) are released from phosphatidylcholine (PC), phosphatidylethanolamine 
(PE) and phosphatidylinositol (PI) by phospholipase A2 and serve as precursors of short-lived 
hormone-like substances called eicosanoids (prostaglandins, thromboxanes, leukotrienes, etc.). 
The bioactive molecules have a wide range of physiological actions, including immune response, 
inflammatory response, neural function, reproduction and enhancement of an organism’s adap-
tation to environmental stress [2, 8]. PI is also a source of such messengers as diacylglycerols 
and inositol phosphates (namely, inositol trisphosphate and others). These messengers, as well 
as the phospholipid phosphatidylserine (PS), are involved in regulating the activity of protein 
kinase C, which controls many cell functions, such as differentiation, proliferation, metabolism 
and apoptosis [2, 8, 9]. Moreover, fatty acids are the most labile components of lipid molecules, 
quickly and accurately reflecting environmental impacts and activating an organism’s adaptive 
abilities. For example, a well-known biochemical response of poikilothermic organisms to low 
temperature is increased fatty acid unsaturation of both membrane and storage lipids [7, 10, 11].  
In addition to membrane lipids, an important role in the adaptive response of organisms to 
various environmental factors belongs to high-energy storage lipids, chiefly triacylglycerols 
and their fatty acids [12–15], which cover the energy costs needed for maintaining homeostasis 
under the new environmental conditions. Since long-chain polyunsaturated fatty acids, par-
ticularly such essential fatty acids as EPA and docosahexaenoic acid (DHA, 22:6n-3), cannot be 
de novo synthesized in marine mussels [16, 17], their incorporation and elimination in mem-
brane and storage lipids are strongly regulated [18, 19]. Thus, lipid and fatty acid composition 
as a key component of various metabolic pathways that are linked to processes important for 
survival and tolerance reflects the adaptive response of an organism to environmental effects. 
It is assumed that lipid composition may be used as a biochemical marker for indicating the 
organism’s physiological state in environmental assessments and biomonitoring.

The blue mussels, Mytilus edulis L., are used worldwide as marine sentinel organisms in bio-
monitoring programmes due to their longevity, sessile nature, global distribution and ability 
to bioaccumulate high concentrations of pollutants [20–22]. In the White Sea, M. edulis L. is the 
dominant species of coastal (intertidal) ecosystems. Numerous studies on White Sea mussels’ 
response to various environmental effects have identified adaptive mechanisms on molecular, 
biochemical, cellular, physiological and behavioural levels of biological organization [23–38].
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This paper summarizes the results of research on lipid composition effects in White Sea blue 
mussels, M. edulis L. (1758), in response to environmental factors such as temperature, salin-
ity, short-term anoxia, change of nutrition source, metals and oil pollution. Phenotype-specific 
features of the lipid composition in White Sea blue mussels from different habitat conditions 
(intertidal zone and aquaculture), as well as compensatory modifications of the lipid compo-
sition in intertidal mussels under chronic stress in the natural habitat and under short-term 
exposure to stress in laboratory experiments, are discussed.

2. Environmental factors

2.1. Temperature

Being a major environmental factor, influences all aspects of life of an organism, especially 
poikilotherms [1]. The literature offers quite detailed descriptions of the contribution of the 
lipid composition to thermal adaptations in bivalves [11, 39–43]. Often, the response involv-
ing the lipid composition depends on the duration of exposure to ambient temperatures. 
Moreover, organ-specific distribution of lipids in Bivalvia causes differences in lipid composi-
tion response to temperature effects, depending on the studied organ. Thus, gills of bivalves, 
which are the location of primary contact with the environment, contain high concentrations 
of membrane lipids, chiefly cholesterol [42]. It is well-known cholesterol is necessary for 
membrane stabilizing and maintaining the permeability of membranes [2, 5]. It was demon-
strated that when exposed to rapid (several hours) temperature fluctuations gills of bivalves 
experience modifications in cholesterol levels, whereas prolonged (several weeks) tempera-
ture impacts induce changes in the amount of phospholipids enriched in polyunsaturated 
fatty acids [41, 43]. Whereas the gill lipid composition response in White Sea mussels in the 
temperature experiment was the opposite: a significant rise of the cholesterol concentration 
in response to prolonged (14 days) impact of both low and high temperatures, while short-
term temperature stress (1 day) influenced the content of phospholipids and their fatty acids 
[36]. Since the synthesis of polyunsaturated fatty acids in bivalves is limited as well as an 
involvement of essential fatty acids in/from membrane lipids is strictly regulated [18, 19], 
presumably, the mussels’ adaptive strategy is to use a less energy-intensive mechanism for 
maintaining optimal membrane fluidity by redistributing polyunsaturated fatty acids among 
storage and membrane lipid fractions (in the absence of additional cholesterol synthesis) that 
bivalves employ to adapt to rapid temperature changes [35, 36]. The role of minor mem-
brane phospholipids (namely, phosphatidylserine and sphingomyelin) in the acclimation of 
mussels to elevated ambient temperature was also demonstrated in gills. They are believed 
to facilitate adaptive modifications of the fluidity and permeability of cell membranes in 
response to elevation of the ambient temperature [35, 36]. Let us remark that a similar effect 
involving these phospholipids was observed in gills of mussels acclimating to variable sea-
water salinity [44]. Elevated ambient temperature is known to produce a destabilizing effect 
on cell membranes in poikilotherms [3]. Apparently, seawater salinity variations, primarily 
reduction of salinity, cause an analogous response of the membrane physicochemical prop-
erties which, in turn, initiates compensatory modifications of the composition of membrane 
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lipids and their fatty acids similar to those observed in response to elevated temperature. 
Digestive glands in bivalves contain higher concentrations of triacylglycerols (TAGs) required 
for energy  metabolism  during their acclimation to new environmental conditions as well as 
for reproductive processes. In particular, it was shown that bivalves from thermally differ-
ent habitats differed in TAG metabolism in the digestive glands during overwintering. Blue 
mussels, M. edulis, adapted to harsh winters, accumulate TAGs enriched in 20:5n-3 fatty acids 
(EPA) in the digestive glands, while the oyster, Crassostrea virginica, which generally occurs in 
warmer habitats, on the contrary, did not reserve TAG before overwintering [42].

2.2. Salinity

Is one of the key abiotic factors in the marine environment. Marine and freshwater molluscs 
were shown to be alike in the content of total and neutral lipids, but the levels of individual 
fractions of phospholipids such as PC, PI, PS and PE, as well as PE plasmalogen form, were 
found to be dependent on the ambient salinity [45]. In gills of bivalves, salinity stress induces 
an increase in negatively charged phospholipids, chiefly PI and cardiolipin. This may suppos-
edly be one of the intracellular mechanisms to bind excessive cations lest they degrade the cell’s 
enzymatic systems [46]. Exposure of White Sea mussels to reduced seawater salinity (15 psu) in 
aquarium experiments (25 psu as a control) resulted in an increase in the concentration of phos-
pholipids, mainly PC and PS, in gills [44], alongside a reduction in the levels of cholesterol and 
storage lipids (triacylglycerols and cholesterol esters) in gills and digestive glands [34, 47]. The 
reduced levels of cholesterol and storage lipids indicate an adverse effect of low salinity on the 
physiological state of the mussels and their metabolism. We know that when salinity is drawn 
down from 25 psu (normal values of salinity in the White Sea) to 14 psu, the functional activity 
of M. edulis is suppressed [23, 48], and the mussels’ tolerance of low salinity is ensured by cellu-
lar volume regulation using organic and inorganic osmolytes [32, 49, 50]. Thus, the acclimation 
of molluscs to reduced salinity apparently implies that storage lipids are utilized not only as 
sources of metabolic energy but also as substrates for the synthesis of organic osmolytes [34]. 
Moreover, it was shown that the action of increased salinity (from 25 psu to 35 and 45 psu) 
leads to various responses of the lipid composition of White Sea mussels, M. edulis, depending 
on the studied organ. Although mantle edge and gills are sites for primary contact with exter-
nal environment, the effect of increased seawater  salinity on both intertidal and cultured mus-
sels caused organ-specific reactions in the cholesterol level: the level rose in the mantle edge 
[51] but declined in gills [44]. Apparently, the different cholesterol content in gills and mantle 
edge of the mussels reflects differences in membrane fluidity and ion permeability in response 
to increased salinity effect. Some authors have pointed out the lack of distinctions between 
marine and freshwater bivalves in the fatty acid composition [45, 52, 53], although some papers 
have reported elevated concentrations of C20 and C22 unsaturated fatty acids, predominantly 
20:5n-3, 22:5n-3 and 22:6n-3, in marine molluscs [54] as well as high level of monounsaturated 
fatty acids and arachidonic acid (20:4n-6) in freshwater molluscs [55]. Yet, the high variability of 
fatty acid content observed in both freshwater and marine mollusc species is primarily due to 
the factors of nutrition and ambient temperature [14, 15, 41–43, 45, 56–58]. Nonetheless, a lower 
level of n-6 polyunsaturated fatty acids was found in gills of marine bivalves acclimated to high 
salinity as compared to the individuals exposed to low salinity [46]. White Sea mussels accli-
mated to different  seawater salinities also manifested  considerable modifications of the lipid 

Organismal and Molecular Malacology146



fatty acid composition in gills and mantle edge. Thus, in gills of intertidal mussels, the level of 
n-6 polyunsaturated fatty acids (mainly owing to AA, 20:4n-6) increased in response to seawa-
ter salinity reduction (5 psu) and elevation (45 psu). At the same time, cultured mussels col-
lected from aquaculture substrates responded with a decrease in n-3 polyunsaturated fatty acid 
(PUFA) content and an increase in saturated fatty acid level in gills both to a reduction (to 5 and 
15 psu) and an elevation (to 35 and 45 psu) of seawater salinity. Remarkably, notwithstanding 
the considerably different lipid composition of gills in intertidal and aquaculture mussels, they 
both responded to critically low salinity (5 psu) with similar modifications of the lipid composi-
tion, indicative of non-specific defence reaction in bivalves—closure of shell valves, reduction 
of total metabolism and transition to anaerobic metabolic pathways [44]. Varied response of 
fatty acid composition to salinity effects was detected in the mantle edge of mussels from dif-
ferent tidal zones (intertidal and aquaculture) [51]. Thus, it was shown that the concentration 
of non-methylene-interrupted fatty acids (NMIFA) in mantle edge increased in the intertidal 
mussels exposed to 5, 35 and 45 psu (25 psu as a control), whereas in cultured mussels exposed 
to 5, 35 and 45 psu salinity, there was an increase in n-3 PUFA content. It is known that NMIFA 
can be synthesized in marine bivalve molluscs in the case of a lack of usual n-3 PUFA [53]. 
Probably, n-3 PUFA deficiency in intertidal mussels is the result of their utilization to generate 
energy required for mussel acclimation to different salinities, whereas additional synthesis of 
NMIFA is essential for maintaining the unsaturated state of membrane phospholipids as well 
as fluidity and permeability of membranes in mantle edge.

2.3. Short-term anoxia

Blue mussels, M. edulis, living in the marine coastal (intertidal) zone are facultative anaerobes 
tolerant of short-term anoxia during low tide [30, 59, 60]. The main sources of energy for bivalves 
in the anaerobic metabolism conditions are glycogen and proteins [1, 61], whereas lipids are uti-
lized to provide for gametogenesis [61]. The role of storage lipids (chiefly triacylglycerols) in the 
adaptive reactions of mussels under anoxic conditions was demonstrated in our studies [62, 63]. 
In White Sea blue mussels, we observed a rise in the levels of cholesterol and PC within total lip-
ids of soft tissues, which are known to have a stabilizing effect on membranes and thus reduce 
their permeability. It is known that anoxia may reduce the permeability of cell membranes, thus 
causing modifications in their lipid composition [64]. On the other hand, elevated concentra-
tions of polyunsaturated fatty acids (in particular, arachidonic acid) and non-methylene-inter-
rupted fatty acids within total lipids of soft tissues balance the stabilizing effect of membrane 
lipids and probably facilitate the functioning of membrane-bound proteins (enzymes, ion chan-
nels and receptors) [63]. Additional research is needed to determine organ-specific reaction of 
the lipid and fatty acid composition in blue mussels under short-term anoxia effect.

2.4. The nutrition factor

It is a known fact that lipid composition, especially the fatty acid profile of filter-feeding mus-
sels, like in any consumers, is a trophic marker of the composition of their food and includes 
the biochemical markers of all seston components, namely, phytoplankton, zooplankton and 
bacteria (detritus) [14, 15, 56, 58, 65–68]. The study of modifications in the composition of lipids 
and their fatty acids in gills and digestive glands of White Sea mussels, M. edulis, induced by 
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their acclimation to laboratory conditions where they were fed with artificial feed (“Coraliquid”, 
Sera) revealed organ-specific patterns in the assimilation and modification of lipids, primarily 
concerning their fatty acid profile [69]. It was shown that change of the food source caused 
alterations in the lipid and fatty acid composition, mainly in the digestive gland. Elevated con-
tent of high-energy lipids (triacylglycerols) enriched in saturated fatty acids (namely, myristic 
14:0 acid), as well as vaccenic 18:1n-7 acid in the feed, promoted the storage of these lipids 
in mussel gills and digestive gland. At the same time, the fact that phospholipids in the feed 
lacked essential fatty acids, EPA and DHA, which are known to be derived from phytoplank-
ton, told considerably on the fatty acid profile of triacylglycerols in the mussels [69].

Intertidal habitats are the most variable in terms of such abiotic environmental factors as tem-
perature, salinity, aerial exposure and concentrations of suspended nutritive material [70]. Life 
under such heavily variable environmental conditions reflects both on the mussels’ physiolog-
ical (including growth rate) and metabolic processes and on the size and age structure of mus-
sel beds (local populations), their abundance and biomass [27, 29, 30, 71].  Ecologo-biochemical 
monitoring during 2009–2014 years of two intertidal mussel beds located in different parts 
of the Gulf of Kandalaksha, White Sea, and differing in hydrological characteristics, includ-
ing seawater salinity, revealed the features of the lipid composition in gills and digestive 
glands which reflect the chronic impact of salinity drops [38]. Frequent salinity drops in one 
of the investigated sites (Site 1) are due not only to discharge from streams but also to human 
activities (namely, unregulated freshwater discharges from hydropower plant). The effect of 
reduced seawater salinity (approximately 9.7–14.0 psu) on mussels from Site 1 appears not 
only in the level of some phospholipids (in particular, phosphatidylserine, phosphatidyletha-
nolamine and phosphatidylcholine), and the ratio of n-3/n-6 polyunsaturated fatty acids in the 
molluscs’ gills and digestive gland, but also in some ecological characteristics of the mussel 
beds, i.e. its size-age structure, abundance and biomass [38]. The elevated content of the named 
phospholipids and the prevalence of n-3 polyunsaturated fatty acids over n-6 polyenes appar-
ently serve to keep membranes permeable to ions and maintain the functioning of membrane-
bound enzymes involved in cellular volume regulation in response to low seawater salinity. 
These data agree with the results of previous aquarium experiments on the effect of low sea-
water salinity on the lipid composition of intertidal and cultured mussels [44], which suggest 
that the mussels’ lipid and fatty acid composition is adapted to secure the survival of the mol-
luscs under low seawater salinity. The elevated ratio of n-3/n-6 polyunsaturated fatty acids in 
the mussels chronically exposed to salinity drops may also be a result of high metabolic rate 
of n-6 polyunsaturated fatty acids (chiefly AA, 20:4n-6). Arachidonic acid is a precursor for the 
synthesis of physiologically active hormone-like molecules, eicosanoids (such as prostaglan-
dins), which are known to build up bivalves’ resistance to stress, including various seawater 
salinities [8, 72–75]. One must mention that intertidal mussels living in a habitat with relatively 
stable salinity conditions (away from freshwater discharges, Site 2 where seawater salinity is 
20.1–22.5 psu) feature an elevated content of cholesterol and n-6 polyunsaturated acids within 
total lipids of both gills and digestive glands [38]. Our monitoring studies of the lipid and fatty 
acid composition in intertidal mussels from different habitats in the White Sea showed that 
the fatty acid composition of digestive glands, unlike their content in gills, reflects the adap-
tive features of the lipid metabolism in the mussels under chronic effect of a wide range of 
environmental factors [38].

Organismal and Molecular Malacology148



There is a lot of research on the study of the differences in physiological (energetic, growth rate, 
clearance rate, ingestion rate, absorption rate, respiration rate) and biochemical indices between 
mussels collected in intertidal (rocky shore) and subtidal (aquaculture) environments [13–15, 
76–78]. It is considered that these origin-related differences in physiological rates have to do 
with features of the energy distribution, namely, in intertidal mussels more energy is directed 
to the formation of a thicker shell, while in subtidal mussels the energy is spent on tissue growth 
[78]. Simultaneously, biochemical differences between these mussel groups are associated with 
various concentrations and quality of seston in the intertidal and subtidal zones [13, 14, 76]. In 
particular, frequent exposure to air (during low tide) has very high effect on the mussels’ energy 
reserves including triacylglycerols, saturated fatty acids and some polyunsaturated fatty acids, 
similarly to the effect of starvation [13, 14]. We have also studied origin-related lipid composi-
tion differences in gills of littoral (intertidal) and cultured (sublittoral) mussels after 2 weeks of 
acclimation to laboratory conditions [44, 79]. It was demonstrated that gills of intertidal mussels 
differ from those kept under the fairly stable conditions of aquaculture (cultured mussels) in 
that the former have a higher level of lipids that stabilize membrane structure (cholesterol and 
saturated fatty acids), as well as n-6 polyunsaturated fatty acids (chiefly AA, 20:4n-6), which 
arguably contribute to the establishment of suitable membrane permeability and regulate the 
activity of membrane-bound enzymes, ion channels and receptors. High level of AA in the 
whole body as well as in gills of intertidal mussels appears to be due to selective retention of the 
fatty acid required for eicosanoid synthesis [14, 15]. In addition, unlike for mussels collected in 
August (where mussels were on reproductive stage IIIc or stage 0, resting), increased content 
of the fatty acid in the whole body of the mussels collected in June (where mussels were on 
reproductive stage IIIb, spawning) is needed for reproductive processes [79]. Although no dif-
ferences were found in the sterol content in mussels originating from the two habitats (rocky 
shore and subtidal) [13], a significant excess in cholesterol level in the whole body and gills of 
intertidal mussels from the White Sea is probably due to the effect of severe fluctuations in tem-
peratures (up to subzero temperatures). These features of the lipid composition are assumed 
to be one of the biochemical adaptation mechanisms providing for the phenotypic plasticity 
and survival of blue mussels in a frequently changing coastal environment. On the other hand, 
high level of triacylglycerols as well as elevated concentrations of n-3 polyunsaturated fatty 
acids, primarily of phytoplanktonic origin, EPA and DHA, in mussels collected from artificial 
substrates evidences high food availability (phytoplankton) and relatively stable environmental 
conditions in aquaculture [44, 79]. These origin-related differences of blue mussel lipid compo-
sition reflect the important role of lipids in adaptation to a changing environment.

3. Pollution effect

Natural habitats of marine aquatic organisms may also be negatively affected by human 
impact. Seawater is contaminated by organic and inorganic chemical substances (such as 
metals, petroleum hydrocarbons, pesticides) from municipal and industrial discharges. Since 
pollutants of various nature get either directly or indirectly involved in lipid peroxidation 
reactions [80–82], it is obvious that a characteristic sign of their impact on cell membranes is the 
disruption of lipid bilayer packing, which in its turn triggers modifications in the composition 
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of membrane lipid components (cholesterol, phospholipids and their fatty acids) [83]. Thus, 
mussels from contaminated sites had an elevated level of triacylglycerols and an increased tri-
acylglycerol/phospholipid ratio, which implies a reduced rate of mobilization of triacylglycer-
ols into the phospholipid pool with serious consequences for the structure and function of cell 
membranes. There was also a substantial decrease in phospholipids, apparently in connection 
with membrane destruction [84–86]. Some papers have reported the modifications in lipid and 
fatty acid composition of hydrobionts, including marine mussels, in response to organic and 
inorganic pollutants’ effect [34, 37, 87–93]. Since the lipid metabolism plays an important role 
in living organism, it is believed that the lipid and fatty acid profile may be used to indicate 
the organism’s health under stress conditions of pollutant effect. Exposure of blue mussels 
from the White Sea to various concentrations of oil products in an aquarium experiment led to 
an increase in the level of phospholipids and a reduction of cholesterol concentration in gills 
and mantle, i.e. the gateway organs for external impacts [25, 34]. These modifications in mem-
brane lipids are believed to make cell membranes more permeable to oil products and create 
the conditions for their accumulation in these organs for further detoxification. A significant 
decrease in the level of membrane lipids—phospholipids (mainly at the expense of PC and 
PE) and cholesterol—simultaneously with an increase in triacylglycerols was observed in gills 
and digestive glands of mussels exposed to various concentrations of cadmium [37]. These 
modifications of the lipid profile reflect the destructive effect of cadmium on cell membranes 
realized through the activation of lipid peroxidation processes. It is worth noting that a signifi-
cant decrease of the cholesterol concentration under the impact of oil products, mainly their 
high concentrations, was observed in all the studied organs (gills, mantle, mantle edge and 
foot) of M. edulis [25, 34], as well as under the impact of cobalt on Mytilus galloprovincialis [94]. 
One of the presumed examples of the toxic effect of oil products, as well as some heavy metals 
on bivalves, is the inhibition of cholesterol synthesis, leading to high membrane permeability. 
At the same time, the effect from exposure to copper as an essential metal was the opposite 
(significant increase of cholesterol concentration), probably meant to stabilize the membranes 
under the metal’s oxidative action and to reduce their permeability. It was noted also that 
when exposed to cadmium and copper [37], as well as to relatively low concentrations of oil 
products [95], mussels demonstrated an elevated level of arachidonic acid. Apparently, AA 
involvement in the synthesis of eicosanoids ensures high resistance of the mussels to these 
xenobiotic impacts. On the other hand, when the concentrations of oil products were high, the 
level of this acid in the mussels decreased, probably due to inhibition of its biosynthesis, given 
the observed elevated concentrations of linoleic acid, its metabolic precursor [95]. The results 
of studies on the lipid composition of gills and digestive glands of intertidal blue mussels, 
M. edulis, collected from different sites in the Gulf of Kandalaksha, White Sea, prove that the 
composition of lipids and their fatty acids depends not only on the hydrological conditions in 
the habitat but also on the degree of human impact on it [38]. To wit, the fatty acid profile of 
the intertidal mussels living in habitats with high human impact is noted for the prevalence of 
oleic (18:1n-9) acid among total lipids of gills and digestive glands. A similar effect in the fatty 
acid composition of total lipids was observed in the mussels exposed to various doses of cop-
per in an aquarium experiment [37]. Elevated content of non-essential oleic acid in bivalves 
may be associated with its additional synthesis under the toxic effect of pollutants and have 
the goal of binding and detoxifying xenobiotic substances. Unsaturated fatty acids are known 
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to be capable of forming complexes with metal ions and thus to contribute to the accumulation 
and detoxification of these xenobiotic substances in mussels [96].

4. Conclusions

The lipid profile of White Sea blue mussels, M. edulis L., is modified in response to various 
environmental factors in order to protect cell membranes, maintain or recover their homeo-
stasis, replenish the cell’s energy and metabolic resources and thus to secure the mussels’ 
adaptation to the change in environmental conditions. Organ-specific distribution of lipids 
and fatty acids in White Sea blue mussels, as well as the dependence of the lipid and fatty acid 
composition response on the effect of various environmental factors on the studied organ, 
was detected. Modifications in the lipid composition predominantly in gills reflect the acute 
effect of environmental factors in aquarium experiment conditions, whereas changes in the 
lipid composition of digestive glands represent an adaptation of the lipid metabolism in 
response to chronic exposure to ambient factors (field monitoring). The composition of lipids 
and their fatty acids in intertidal mussels evidences their chronic exposure to abiotic envi-
ronmental factors and human impact and is in agreement with data on the modifications of 
the lipid profile in White Sea blue mussels subjected to such environmental factors (namely, 
salinity, short-term anoxia, heavy metal and oil pollution) in aquarium experiments. The data 
discussed above prove that the lipid profile plays an important role in the adaptation of blue 
mussels, M. edulis, to new conditions in the habitat. Assessment of the lipid composition in 
intertidal and cultured mussels helps disclose the metabolic strategy to ensure resistance and 
adaptation of the organisms to environmental impacts of different nature and can be used as 
a biochemical marker for indicating the organism’s physiological condition. This knowledge 
is necessary for environmental safety assessment under both natural and human impacts, as 
well as to predict an organism’s and population’s status in biomonitoring.
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