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Abstract: There is a need to study the time course of toxic chemical effects on organisms because there might be a time lag between the
onset of chemical exposure and the corresponding adverse effects. For aquatic organisms, crude oil and oil constituents originating from
either natural seeps or human activities can be relevant case studies. In the present study the authors tested a generic toxicokinetic model
to quantify the time-varying effects of various oil constituents on the survival of aquatic organisms. Themodel is based on key parameters
applicable to an array of species and compounds with baseline toxicity reflected by a generic, internal toxicity threshold or critical body
burden (CBB). They compared model estimates with experimental data on the effects of 8 aromatic oil constituents on the survival of
aquatic species including crustaceans and fish. The average model uncertainty, expressed as the root mean square error, was 0.25
(minimum–maximum, 0.04–0.67) on a scale between 0 and 1. The estimated survival was generally lower than the measured survival
right after the onset of oil constituent exposure. In contrast, the model underestimated the maximum mortality for crustaceans and fish
observed in the laboratory. Thus, the model based on the CBB concept failed to adequately predict the lethal effects of the oil constituents
on crustaceans and fish. Possible explanations for the deviations between model estimates and observations may include incorrect
assumptions regarding a constant lethal body burden, the absence of biotransformation products, and the steady state of aromatic
hydrocarbon concentrations in organisms. Clearly, a more complex model approach than the generic model used in the present study is
needed to predict toxicity dynamics of narcotic chemicals. Environ Toxicol Chem 2017;36:128–136. # 2016 SETAC
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INTRODUCTION

Crude oil can be introduced into the aquatic environment via
natural seeps and human activities like oil extraction,
transportation, and consumption [1]. Oil drilling activities
lead to discharge of water contaminated with oil constituents
and added process chemicals. Furthermore, accidents during
shipping and drilling can cause the release of large amounts of
crude oil to the environment, resulting in mass mortality of
aquatic organisms from physical contamination and oil
toxicity [2]. This has been demonstrated by the immediate
mortality of crustaceans, fish, and mammals after oil spills, for
example, from the supertanker Amoco Cadiz and the Deepwater
Horizon oil rig [3,4].

Oil has the tendency to accumulate in biota [5]. Microcosm
and laboratory studies allow for the examination of oil effects on
aquatic species. Although the number of experiments has
increased over the last decade [2,6–12], effect data of oil
constituents are still lacking for a large number of marine and
freshwater species. Lethal effects on individuals, measured in
single-species toxicity experiments for a selection of species
and chemicals, can be used in mechanistic models to estimate
effects on survival for oil substances and species that have
remained untested. Various models simulate the time course of

toxic effects on organisms by translating external concen-
trations to internal concentrations and subsequently linking
these internal concentrations to effects on organisms [8]. In
particular, the critical body residue (CBR) model and the
damage assessment model have been used to estimate the time
course of toxic effects (residue at 50% mortality) of a few
polycyclic aromatic hydrocarbons (PAHs) in 2 amphipods and a
midge [13,14]. The CBR or critical body burden (CBB) concept
assumes an immediate adverse effect of a chemical on an
organism if an internal concentration threshold is exceeded.
Because the toxicity threshold for a given species is assumed
invariant, variability in response is attributed to toxicoki-
netics [15]. A toxicokinetic–toxicodynamic model that simu-
lates energy budgets in organisms and uses a time-dependent
damage variable, DEBtox, has been used to estimate effects of
the oil constituents fluoranthene and pyrene on the survival and
reproduction of the water flea Daphnia magna [7]. To relate a
metabolic parameter to the body burden in an organism DEBtox
uses an internal no-effect concentration and a tolerance
concentration [7].

In toxicokinetic–toxicodynamic modeling, there is a trade-
off between the level of detail and the number of parameters that
need to be estimated from experimental data [16]. Application
of species-specific and substance-specific models may generate
accurate predictions yet require more input data, which may
give rise to difficulties in the parameterization when being used
for untested species and chemicals. By contrast, the OMEGA
model represents a modeling approach based on relatively few
and easily retrievable chemical properties and biological traits,
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such as the chemical’s octanol–water partition coefficient
(KOW) and the species’ body weight [17,18]. The model has
been successfully applied to estimate the time-varying popula-
tion development of copepod (Eurytemora affinis) and white-
tailed eagle (Haliaeetus albicilla) populations exposed tometals
and organic pollutants (polychlorinated biphenyls and dichlor-
odiphenyldichloroethylene), respectively [19,20]. However,
these applications were based on substance-specific toxicity
threshold values (50% effect concentration and 50% lethal
concentration). It has not yet been evaluated whether the
OMEGA model can be profitably used to assess toxic effects of
oil constituents based on a generic, internal toxicity threshold or
CBB.

The main goal of the present study was to parameterize and
test the CBB–based OMEGA model to quantify the time-
varying effects of oil constituents on the survival of aquatic
organisms. First, we estimated the body burden of oil
constituents in aquatic organisms over time [17,21]. Next, we
assumed survival to be a log-logistic function of the body
burden to estimate the toxic impact of oil constituents on aquatic
organisms [22,23]. For parameterization of the model equa-
tions, we used generic values where applicable and chemical-
specific or species-specific data where needed. Finally, the
model results were compared with measured effects of 8
selected oil constituents (monocyclic, dicyclic, and PAHs) on
the survival of crustaceans and fish. While the equations should
be applicable for different exposure scenarios, we tested the
model for constant exposure only because 1) its validity for
simple cases should be known before proceeding to complex
situations, and 2) experiments with variable oil concentrations
have not been carried out yet.

MATERIALS AND METHODS

Model equations

Bioaccumulation. The OMEGA bioaccumulation model
[17] estimates the body burden in an organism (i.e., internal
chemical concentration) based on the uptake and elimination rate
constants of the chemical. These rate constants are quantified as a
function of the KOW of the chemical and the organism’s wet
weight, lipid content, and trophic level [17]. In the present study
we estimated the absorption of an oil constituent via the water
phase (k0,in; liters per kilogram wet wt daily). Uptake via food or
oil droplets was assumed negligible [24]. Elimination from the
organism was assumed to occur via water (k0,out), feces (k1,out),
dilution by biomass as a consequence of growth or reproduction
(k2,out), and biotransformation of the chemical (k3,out). The total
elimination rate constant was the sum of these 4 elimination rate
constants (Skj,out; kilogram wet wt/kilogram wet wt daily). The
model did not include the possible body burdens of products
formed by biotransformation. Assuming first-order kinetics, the
time-varying concentration of a chemical c in an organism of
species level s (micrograms per kilogram wet wt) was calculated
as [17]

dBBs;c

dt
¼ k0;in � Cw;c �

Xj¼3

j¼0

kj;out � BBs;c ð1Þ

which represents the absorption from water with exposure
concentration Cw,c (micrograms per liter) and the elimination
from the organism with a chemical residue BBs,c (micrograms
per kilogram wet wt). A conceptual diagram of the OMEGA
model can be found in De Hoop et al. [21], and the model

equations used to determine k0,in and Skj,out are available in
Table 1.

Effects on survival. The effects of oil constituents on the
survival of aquatic organisms were calculated relative to the
survival representative of a control situation (no unit;
Equation 2). We assumed the effects to be a logistic function
of the estimated body burden [23,25],

Fraction survivalt ¼ 1

1þ max BBs;c;t

LBB

� �slope ð2Þ

where maxBBs,c,t is the highest body burden that occurred until
time t (millimoles per kilogram lipid), the lethal body burden
translates to LBB (millimoles per kilogram lipid; i.e., the CBB),
and “slope” is the interindividual variation in LBB as
represented by the corresponding concentration–response
curve [26]. The model assumed an individual tolerance
distribution, meaning that individuals die at different body
burdens because they are assumed to have different sensitivities
to chemicals [8]. Furthermore, consistent with the CBB concept,
death occurs immediately if the LBB is exceeded and the model
assumes no effect of a chemical on the metabolic processes of
the organisms. The estimated body burden (BBs,c,t) was
converted from micrograms per kilogram wet weight to
millimoles per kilogram lipid weight with the molar mass
(grams per mole) of the oil constituent and the lipid fraction of
the organism.

Model input and parameters

Bioaccumulation. Weparameterized themodel with generic
data where applicable (e.g., the allometric regression exponent)
and chemical-specific or species-specific data where needed
(e.g., KOW, species’ body wt; Table 1). To facilitate comparison
of the model outcomes with experimental data from survival
experiments (see section Comparison with experimental data),
we used the oil constituent concentrations in water (Cw,c) as well
as the wet weight and lipid content of the species from the
survival experiments themselves. In most experiments a
nominal Cw,c was reported, except for Pimephales promelas
and Hyalella azteca exposed to pyrene and fluorene [8,9]. In 5
out of the 6 survival experiments the test solutions were changed
daily or every other day to achieve the initial concentration
specified [7–9,14,27]. If weight or lipid content was not
reported, we used a value obtained from other experimental
studies on the same species of a similar developmental stage
(Supplemental Data, Table S1). Lipid fractions reported on a dry
weight basis were converted with a default dry-to-wet weight
ratio for the species’ taxonomic group [28]. If no measured lipid
fraction could be obtained, we used default values specific to the
species’ trophic level (Table 1). The molecular weight and KOW

of the oil constituents were obtained from the CONCAWE
database as compiled in the PETROTOX model (Table 2 [29]).
Data needed to calculate the absorption (k0,in) and elimination
(k0,out, k1,out, k2,out) rate constants were obtained from the
literature [17]. Biotransformation rate data (k3,out) were not
available for most invertebrate species and oil constituents,
except for H. azteca and Pandalus platyceros exposed to
fluoranthene and benzo[a]pyrene, respectively [21,30,31]. We
therefore did not include biotransformation rate constants for
crustaceans. For fish, whole-body primary biotransformation
rate constants for oil constituents were estimated using
quantitative structure–activity relationships (QSARs) based
on the KOW, biological half-life, and molecular weight of a
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chemical [21,32,33]. Table 2 shows an overview of the
estimated absorption and elimination rate constants per oil
constituent.

Effects on survival. For the parameterization of Equation 2,
we collected toxicity data from the literature pertaining to
chemicals with a narcotic toxic mode of action and aquatic
species. A narcotic toxic mode of action is believed to be the
result of nonspecific disturbance of membrane integrity and
functioning because of partitioning of toxicants into biological
membranes [34,35]. The majority of oil constituents are
expected to exhibit this so-called baseline toxicity based on
their chemical structure consisting mainly of carbon and
hydrogen [36]. In a previous study, measured mean lethal

effect concentrations (50% hazard concentration) for aquatic
species corresponded well with estimated lethal effect concen-
trations (50% lethal concentration) expected from a narcotic
toxic mode of action for the oil components naphthalene and
2-methyl-naphthalene [37]. In the present study, we therefore
parameterized the model with a generic LBB and slope based on
internal concentration–response curves pertaining to multiple
narcotic chemicals, including oil constituents, and aquatic
species.

We determined a geometric mean LBB of 66mmol/kg
lipid (minimum–maximum, 12–280mmol/kg lipid wt) based
on 11 aquatic species exposed to chemicals with an expected
narcotic toxic mode of action, such as PAHs, fluorobenzenes,

Table 1. Generic parameter values and variables used for estimating the effect of oil constituents on the survival of aquatic species

Symbol Description Unita Typical value/calculated from Reference

Kinetics (Equation 1)
i Trophic levelb 1¼ algae and plants, 2¼ herbivores, 3¼ carnivores
j Medium 0¼water, 1¼ food, 2¼ biomass [16]
k0,in Absorption rate constant L/kg d�1 w�k

rH2O;0
þ rCH2;i

Kow
þ 1

g0

[6]

k0,out Excretion rate constant d�1 1
pCH2;i� Kow�1ð Þþ1 � w�k

rH2O;0þ
rCH2;i
Kow

þ 1
g0

[6]

k1,out Egestion rate constant d�1 1
pCH2;i� Kow�1ð Þþ1 � w�k

rH2O;1þ
rCH2;i
qT�Kow

þ 1
pCH2;i�1�Kow�ð1�p1 Þ�qT�g1

[6]

k2,out Dilution rate constant d�1 qT � g2 � w�k. [6]
K3,out Biotransformation rate d�1 QSAR for fish [26,27]
Cw,c Concentration in water mg/L Variable c

BBs,c Concentration in organism mg/kg Variable [16]
KOW Octanol–water partitioning coefficient — Variable [27,28]
w Species body weight kg Variable d

pCH2,i Lipid fraction of species kg kg�1 Default: 0.01 (i¼ 1), 0.03 (i¼ 2), or 0.05 (i¼ 5) [17,29]
pCH2,i-1 Lipid fraction of food kg kg�1 Trophic level: 1¼ 0, 2¼ 0.01, 3¼ 0.03 [29]
k Rate exponent 0.25 [16]
rH2O,j Water layer diffusion resistance d kg–k 2.8� 10�3 (j¼ 0), 1.1� 10�5 (j¼ 1) [16]
rCH2,i Lipid layer permeation resistance d kg–k 4.6� 103 (i¼ 1), 6.8� 101 (i� 2) [16]
p1,i Fraction ingested food assimilated kg kg�1 0 (i¼ 1), 0.4 (i¼ 2), 0.8 (i¼ 3) [16]
qT Temperature correction factor kg kg�1 1 (cold-blooded organisms) [16]
g0 Water absorption–excretion coefficient kgk d�1 200 (water-breathing organisms) [16]
g1,i Food ingestion coefficient kgk d�1 0 (i¼ 1), 5.0� 10�3 (i� 2) [16]
g2 Biomass (re)production coefficient kgk d�1 6.0� 10�4 (all organisms) [16]

Dynamics (Equation 2)
LBB Lethal body burden mmol/kg lipid wt 65.6 (min–max: 12.3–280.0, n¼ 95) e

Slope Slope of concentration–response curve — 3.0 (min–max: 0.9–24.9, n¼ 16) e

a Kilograms are in wet weight.
b Crustaceans are considered herbivores; fish are considered carnivores.
c See Supplemental Data, Table S4.
d See Supplemental Data, Table S1.
e See Supplemental Data, Table S3.

Table 2. Estimated absorption rates (k0,in) and elimination rates via water (k0,out), feces (k1,out), dilution by biomass (k2,out), and biotransformation (k3,out) for
several oil constituents in crustaceans and fish

Species Chemical KOW Molar mass (g/mol) k0,in k0,out k1,out k2,out k3,out

Crustacea
Chironomus tentans Fluoranthene 105.25 202.3 2353.3 1.04 0.05 0.01
Daphnia magna Pyrene 105.18 202.3 4283.8 0.95 0.04 0.02
Daphnia magna Fluoranthene 105.25 202.3 4320.1 0.81 0.04 0.02
Diporeia spp. Fluoranthene 105.25 202.3 2787.2 0.26 0.01 0.01
Hyalella azteca Fluoranthene 105.25 202.3 2671.2 0.61 0.03 0.01
Hyalella azteca Fluorene 104.05 166.2 1583.7 5.67 0.03 0.01
Hyalella azteca Pyrene 105.18 202.3 2648.7 0.72 0.03 0.01

Fish
Clupea pallasii Benzene 102.00 78.1 78.7 13.14 0.03 0.03 7.64
Oncorhynchus mykiss Phenanthrene 104.65 178.2 441.5 0.20 0.00 0.00 0.35
Oncorhynchus mykiss Retene 106.24 234.3 524.4 0.01 0.00 0.00 0.28
Pimephales promelas Trimethylbenzene 103.42 120.2 182.7 1.38 0.00 0.00 0.87
Pimephales promelas Naphthalene 103.35 128.2 160.5 1.43 0.00 0.00 0.30
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chlorobenzenes, and bromobenzenes (Table 1; Supplemental
Data, Table S2). Most scientific publications do not report
the slopes of concentration–response curves [8]. We
therefore calculated slopes ourselves by fitting concentra-
tion–response functions to the reported raw internal
concentration–response data (in millimoles per kilogram
lipid wt and percentage survival). An arithmetic mean slope
of 3.0 was determined based on narcotic chemicals, such as
PAHs, bromobenzenes, chloroethanes, and chlorobiphenyls,
affecting the survival of a midge, amphipods, and fish
(Table 1; Supplemental Data, Table S2). An overview of the
LBBs slopes of concentration–response curves, and the
corresponding chemicals and species is shown in Supple-
mental Data, Tables S2 and S3.

Comparison with experimental data

We compared our model estimates on survival with experi-
mental data on the survival of 4 arthropod species (Branchiopoda
and Malacostraca) and 3 fish species (Actinopterygii) exposed to
various oil constituents: pyrene, fluoranthene, fluorene, phenan-
threne, retene (i.e., PAHs), naphthalene, and 2 benzenes (Table 2;
Supplemental Data, Table S4) [7–9,14,27,38]. The experimental
survival data were relative to the survival representative of the
control situation. One of these studies reported the measured body
burdens in addition to the measured effect on the survival of an
aquatic species [14]. This enabled us to compare estimated and
measured body burdens to separately evaluate the performance of
the kinetic part of the model. The experimental data used for
comparisonwere reportedaveragesof thebodyburdens andeffects
on survival measured in multiple replicates per experimental
treatment.None of the experimental studies reported the variability
in measurements between the replicas.

Model performance statistics

We calculated the root mean square error (RMSE) to
evaluate the overall goodness of fit of the model [39]. The
RMSE is a relative measure for the performance of the model.
First, we calculated the RMSE per species, chemical, and
exposure concentration:

RMSEs;c;Cw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Os;c;Cw;t � Ps;c;Cw;t
� �2

n

s
ð3Þ

where Os,c,Cw,t and Ps,c,Cw,t are the measured and estimated
fraction survival (between 0 and 1) for species s, chemical c,
exposure concentration Cw, and time t, respectively, and n is the
number of times the fraction survival was measured during the
experiment. Second, the typical RMSE was determined by
simply averaging the RMSECw values,

RMSE ¼
P

RMSECw
m

ð4Þ

where m denotes the number of experiments. The RMSE
summarizes both random error and systematic bias [40].

RESULTS

Overall, the estimated time-varying survival deviated from
the measured survival dynamics for crustaceans and fish
exposed to 8 oil constituents. In general, the maximum effect
of the oil constituents on the survival of several crustaceans and
fish estimated with the model was reached within 4 d (Figures 1

and 2). Right after the onset of exposure, the model
overestimated the lethal effect of pyrene and fluorene on H.
azteca and pyrene and fluoranthene on D. magna (Figure 1A,B,
D,E). The model also overestimated the lethal effect of
fluoranthene on H. azteca, Chironomus tentans, and Diporeia
spp. during the first days of exposure (Figure 1C,F,G).
Furthermore, we found that the estimated body burdens of
fluoranthene reached a steady state earlier than the measured
body burdens for H. azteca and C. tentans (Supplemental Data,
Figure S1). For Diporeia spp. the body burdens were
overestimated during the first days of exposure days and
underestimated at the last day of exposure (day 28).

The model underestimated the maximum mortality for most
crustaceans except for D. magna exposed to fluoranthene
(Figure 1E) and Diporeia spp. exposed to 250mg/L fluoran-
thene (Figure 1G). Figure 1B,D shows minor differences
between estimated and measured survival for H. azteca and D.
magna exposed to 698mg/L fluorene and 70mg/L pyrene,
respectively. For fish, the model underestimated the mortality
except for P. promelas exposed to trimethylbenzene
(Figure 2A) and to 6050mg/L naphthalene (Figure 2B). The
average uncertainty in the modeled effects on survival,
expressed as the RMSE, was 0.25 with a minimum and
maximum RMSECw of 0.04 and 0.67, respectively (Table 3).
More specifically, the RMSECw ranged from 0.04 to 0.67 for
crustaceans and from 0.07 to 0.55 for fish.

DISCUSSION

In general, the present study showed that the generic and
dynamic OMEGA model, based on the CBBs concept,
overestimated the mortality right after the onset of exposure
and underestimated the maximummortality for crustaceans and
fish exposed to oil constituents.

The CBB approach thus failed to predict the dynamic effects
of chemicals with a baseline toxicity (narcosis) on the survival
of organisms. In the next section,Model deviations, we discuss
potential reasons for the deviations found.

Model deviations

The geometric mean of measured LBBs (66mmol/kg lipid)
was in the range of the LBBs estimated using QSARs for fish
exposed to 124 narcotic chemicals (i.e., 40–160mmol/kg
lipid) [41–43]. In addition, the geometric mean LBBs
determined for oil constituents (64mmol/kg lipid) and narcotic
chemicals excluding oil constituents (75mmol/kg lipid) were
significantly similar (p> 0.05; Supplemental Data, Table S3).
The performance of themodel improved slightly from an RMSE
of 0.25 (RMSECw 0.04–0.67) to 0.23 (RMSECw 0.02–0.56)
when optimizing the mean LBB from 66mmol/kg lipid to
89mmol/kg lipid because the reduced differences between
measured and estimated mortality right after the onset of
exposure outweigh the increased deviations at maximum
mortality.

In addition, a sensitivity analysis was performed to evaluate
the influence of the LBB on the model fit. Overall, a factor 2
lower LBB did not improve the average model performance
(RMSE 0.34 and RMSECw 0.02–0.84). A factor 2 higher LBB
resulted in a similar average RMSE of 0.25 compared to no
change in LBB, but the RMSECw range improved slightly to
0.01 to 0.48. In particular, the difference between survival
estimates and measurements reduced by 46% to 78% for D.
magna exposed to fluoranthene and 67% for P. promelas
exposed to trimethylbenzene (Supplemental Data, Table S5 and
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Figures S2 and S3). Nevertheless, the model still overestimated
the survival fraction in the first days of chemical exposure. In
addition, species-specific and chemical-specific measured
LBBs were reported for H. azteca, C. tentans, and Diporeia
spp. exposed to fluoranthene: 71mmol/kg lipid, 19mmol/kg
lipid, and 85mmol/kg lipid, respectively [14]. The relatively
low LBB for C. tentans indicated higher species sensitivity to
fluoranthene. Yet, when estimating the survival using the
species-specific LBB instead of the narcotic LBB, the RMSECw

for C. tentans exposed to different fluoranthene concentrations
increased from a range of 0.07 to 0.30 to a range of 0.08 to 0.45.
Concluding, the LBB influences the model performance for few
species exposed to specific aromatic hydrocarbons, but the
sensitivity analyses indicated no general pattern for all exposure
concentrations. For example, the model fit right after the onset
of exposure remained erratic.

The average slope (i.e., 1/b) of 3.0 for internal concen-
trations was similar to a previously reported slope of 3.1
(minimum–maximum, 0.6–4.8) of the external concentration–
response curves of crustaceans exposed to chemicals with a
narcotic toxicmode of action [44]. The average slope of 4.2 for 4

oil constituents was higher than the slope of 2.7 for narcotics
excluding oil constituents (Supplemental Data, Table S3). The
best possible model fit, that is, an RMSE of 0.22 (RMSECw

0.03–0.50) instead of 0.25, was obtained by reducing the slope
from 3.0 to 1.1, thereby suggesting a very high interindividual
variation in LBBs. A sensitivity analysis showed a change in
average RMSE from 0.25 to 0.27 (RMSECw 0.00–0.75) and 0.22
(RMSECw 0.04–0.54) using a factor 2 lower and higher slope,
respectively (Supplemental Data, Table S5 and Figure S2).
Overall, the factor 2 higher slope slightly reduced the difference
between estimates and measurements, in particular forDiporeia
spp. exposed to fluoranthene (11–46% reduction). In line with
the LBB, the slope influences the model performance for few
species but indicated no general pattern for all exposure
concentrations.

In 4 survival experiments a nominal exposure concentration,
Cw,c, was reported [7,14,27,38]. Although test solutions were
changed daily or every other day to achieve the initial
concentration specified, sorption and volatilization could have
contributed to a reduced water concentration. We evaluated if
exposure concentration and time could be explanatory variables

Figure 1. Fraction survival measured experimentally (dots) and estimated with Equation 1 and Equation 2 (lines) for the crustaceans Hyalella azteca (A–C),
Daphnia magna (D,E), Chironomus tentans (F), and Diporeia (G) exposed to different concentrations of oil constituents.
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for the degree of deviation between the estimated and measured
survival. A factor underestimation or overestimation per data
point, calculated using Ps;c;Cw;t=Os;c;Cw;t, was related to the
corresponding time t or exposure concentrationCw,c using linear
regression. Over all species and oil constituents, the relative
deviation showed a significant positive trend in relation to Cw,c

and time (p¼ 0.04 and <0.01, respectively). Yet, these trends
for Cw,c and time explained only 1.7% and 3.1%, respectively,
of the variation in the estimated/measured ratios (Supplemental
Data, Figure S3).

The estimated fraction survival reached a steady-state
situation earlier than observed in the experiments. This could
partly be explained by overestimated body burdens in the first
exposure days, as shown forH. azteca, C. tentans, andDiporeia
spp. exposed to fluoranthene (Supplemental Data, Figure S1).
We evaluated the performance of the kinetic part of the model
by calculating the RMSE using log-transformed measured and
estimated body burdens in Equations 3 and 4. The model
overestimated the body burdens of fluoranthene in H. azteca by
a factor of 1.4 to 1.7 (factor¼ 10RMSE) and in C. tentans by a
factor of 1.3 to 2.0 (Supplemental Data, Table S6). ForDiporeia
spp. the body burdens were overestimated for the first exposure
days and underestimated at the last day, resulting in an overall
overestimation by a factor of 1.3 to 2.5.

Overestimation of the body burdens, and thusmortality, right
after the onset of exposuremay be partly explained by a possible
underestimation of the weight or lipid fraction of the organisms.
Except for the lipid weight of H. azteca, C. tentans, and
Diporeia spp. exposed to fluoranthene, we used values obtained
from other experimental studies. An underestimated weight
would lead to overestimated absorption and elimination rates,
causing the maximum estimated mortality to be reached more
quickly compared with the measured mortality.We performed a
sensitivity analysis to evaluate the influence of the weight and
lipid fraction on the model fit. We set both variables on no

change and an order of magnitude decrease and increase
(Supplemental Data, Table S7). Overall, a factor 10 decrease
and increase in wet weight had a small impact on the relative
error (RMSECw 0.05–0.69 and 0.04–0.63, respectively) com-
pared to no change in wet weight (RMSECw 0.04–0.67). Except
for H. azteca exposed to pyrene, P. promelas to naphthalene
(6050mg/L), and C. tentans to fluoranthene (125mg/L), the
RMSE reduced by 22% to 40% using a factor 10 increase in wet
weight (Supplemental Data, Table S7). An order of magnitude
change in lipid fraction resulted on average in lower model
performance as the RMSE increased from 0.25 to 0.28
(RMSECw 0.03–0.76) and 0.26 (RMSECw 0.01–0.73) using a
factor 10 lower and higher lipid fraction, respectively. The
model fit improved with 41% to 68% using a factor 10 higher
lipid weight for some individual cases: D. magna exposed to
173mg/L fluoranthene,Diporeia spp. to 250mg/L fluoranthene,
H. azteca to fluorine, and P. promelas to trimethylbenzene
(Supplemental Data, Table S7). A factor 10 deviation in wet
weight is, however, expected to be more likely than a similar
high deviation in lipid weight. Eventually, 1 order of magnitude
change in the input variables wet weight and lipid fraction did
not produce a general improvement of the model performance
(Supplemental Data, Figures S3A,B and S4).

The exclusion of biotransformation rates (k3,out) of oil
constituents in crustaceans may also contribute to the
overestimation of mortality. The present model included
biotransformation as an additional elimination route for the
parent compound and excluded the possible body burdens of
products formed by biotransformation. An underestimated
elimination rate as a result of exclusion of biotransformation
would therefore lead to overestimated body burdens and
mortality. Only metabolic transformation rates of 1.15� 0.1
d�1 and 0.06 pmolmin�1 g�1 have previously been reported for
H. azteca and P. platyceros exposure to fluoranthene and
benzo[a]pyrene, respectively [30,31]. However, after including

Figure 2. Fraction survival measured experimentally (dots) and estimated with Equation 1 and Equation 2 (lines) for the fish Pimephales promelas (A,B),
Clupea pallasii (C), and Oncorhynchus mykiss (D,E) exposed to different concentrations of oil constituents.
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a biotransformation rate of 1.15 d�1 in the model, the
differences between the estimated and measured time-varying
survival decreased for D. magna, yet increased for H. azteca
(see Supplemental Data, Figure S5). Furthermore, this particu-
lar biotransformation rate was not included in the model
estimations because in the survival experiment with H. azteca
the body burdens were expressed as total fluoranthene
equivalent residues, that is, the total internal concentration of
parent and metabolite compounds [14].

Narcosis was the suggested toxic mode of action of the
parent and metabolite compounds for fluoranthene, justifying
body burden addition [14]. Metabolites could also exhibit a
more specific toxicity than narcosis; for instance, some
metabolites of phenanthrene can cause toxic effects by a
nonnarcotic and nonphototoxic mode of action in juvenile
fish [45]. Some parent PAHs are also known to cause specific
(chronic) effects, such as cardiotoxicity [46] and dioxin-like
aryl hydrocarbon receptor–mediated effects [47]. For fish, the
QSARs used to predict biotransformation rates do not provide
predictions for the formation of metabolites, some of whichmay
be at least as toxic as the parent compound [32]. Nevertheless, in
the present study differences between the modeled and
measured survival for retene (dioxin-like toxic mode of action)
are comparable with the differences of the other oil constituents
with an expected narcotic toxic mode of action.

In a toxicity study with a light and a heavy oil type it was
suggested that the toxicity of heavy oil is higher because of a
toxic mode of action other than narcosis: physical soiling. Very
heavy oil constituents may contribute to physical soiling of the

organisms depending on the amount of oil present in the
sediment [48]. In the present study, themolecular mass of the oil
constituents ranged between 78 g/mol for benzene and
234 g/mol for retene. Although the performance of our model
was similar for the light and heavier chemicals, it should be
taken into account that physical effects might also contribute to
a reduced survival of organisms.

Model assumptions

Body burden was immediately linked to survival in our
model because we assumed a steady state to occur rapidly for
chemicals with baseline toxicity [8]. However, especially forH.
azteca and D. magna exposed to pyrene, fluoranthene, and
fluorene, no effect was observed in the first 4 d to 8 d of the
experiment, respectively, resulting in a large deviation between
the measured and estimated mortality rates. If the time-varying
body burdens cannot explain the time course of survival,
alternative approaches could be used. For example, it could be
assumed that the body burden leads to damage, which in turn
leads to mortality [8,14]. Damage would then be used as a dose
metric to simulate delayed effects in the toxicodynamic part of
the model [48].

In accordance with previous studies, the LBB of chemicals
with a narcotic toxic mode of action was assumed to be
independent of exposure-related parameters such as time and
concentration [43,49]. In various studies, this concept of a
constant LBB (e.g., in the CBR model) has been tested by
measuring LBBs and the exposure duration until mortality (time
to death) of aquatic species exposed to organic chemicals.

Table 3. The number of data points (n) and root mean square errors of the fraction survival of different aquatic organisms exposed to different oil constituents

Chemical Cw (mg/L) Species Latin name Species common name n RMSEcw Reference

Fluoranthene 16 Chironomus tentans Midge 4 0.10 [14]
Fluoranthene 31 Chironomus tentans Midge 4 0.21 [14]
Fluoranthene 63 Chironomus tentans Midge 4 0.30 [14]
Fluoranthene 125 Chironomus tentans Midge 4 0.27 [14]
Fluoranthene 250 Chironomus tentans Midge 4 0.07 [14]
Pyrene 18 Daphnia magna Water flea 15 0.15 [7]
Pyrene 35 Daphnia magna Water flea 15 0.04 [7]
Pyrene 70 Daphnia magna Water flea 15 0.20 [7]
Fluoranthene 86 Daphnia magna Water flea 15 0.49 [7]
Fluoranthene 173 Daphnia magna Water flea 15 0.67 [7]
Fluoranthene 16 Diporeia spp. Amphipod 3 0.18 [14]
Fluoranthene 31 Diporeia spp. Amphipod 3 0.24 [14]
Fluoranthene 63 Diporeia spp. Amphipod 3 0.18 [14]
Fluoranthene 125 Diporeia spp. Amphipod 3 0.21 [14]
Fluoranthene 250 Diporeia spp. Amphipod 3 0.28 [14]
Fluoranthene 16 Hyalella azteca Amphipod 4 0.17 [14]
Fluoranthene 31 Hyalella azteca Amphipod 4 0.14 [14]
Fluoranthene 63 Hyalella azteca Amphipod 4 0.14 [14]
Fluoranthene 125 Hyalella azteca Amphipod 4 0.30 [14]
Fluoranthene 250 Hyalella azteca Amphipod 4 0.09 [14]
Fluorene 698a Hyalella azteca Amphipod 11 0.18 [9]
Fluorene 898a Hyalella azteca Amphipod 11 0.30 [9]
Pyrene 89a Hyalella azteca Amphipod 11 0.27 [9]
Pyrene 111a Hyalella azteca Amphipod 11 0.36 [9]
Pyrene 140a Hyalella azteca Amphipod 11 0.38 [9]
Benzene 13000 Clupea pallasii Pacific herring 3 0.12 [38]
Benzene 31900 Clupea pallasii Pacific herring 3 0.36 [38]
Phenanthrene 100 Oncorhynchus mykiss Rainbow trout 15 0.40 [37]
Retene 100 Oncorhynchus mykiss Rainbow trout 15 0.22 [37]
Naphthalene 6050a Pimephales promelas Fathead minnow 5 0.24 [8]
Naphthalene 10305a Pimephales promelas Fathead minnow 5 0.07 [8]
Trimethylbenzene 8090a Pimephales promelas Fathead minnow 5 0.55 [8]
RMSEmodel 0.25

a The measured exposure concentration.
RMSE¼ root mean square error.
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Depending on the method used, the LBB varied or remained
constant over time. For example, within 1 experimental treatment
(e.g., 1 exposure aquarium) the variation in organism sensitivity
led to an increase inLBBwith increasing exposure duration forP.
promelasexposed tonaphthaleneand1,2,4-trichlorobenzene[50]
andH. azteca exposed to 3 PAHs [9,13]. In contrast, comparing a
mean LBB and exposure duration over different treatments
resulted in a decreased or a constant LBB with time for 2 fish, a
crab, and an amphipod species exposed to biocides, chloroben-
zenes, and PAHs [13,50]. Despite these contrasting outcomes,
these findings indicate that temporal variation in the effects of oil
constituents on the survival of aquatic species may be the result
not only of time-varyingbodyburdensbut also of changes inLBB
with increasing exposure duration [13].

In the present study the model was based on the individual
tolerance hypothesis. An alternative hypothesis is stochastic death,
which assumes that all individuals have an equal chance of dying
and the probability of dying increases when exceeding the
LBB[25]. The individual sensitivities of crustaceans andfish in the
experiments were unknown because they were not measured;
therefore, both model hypotheses could have been applicable. To
evaluate the performance of the model when assuming stochastic
death, the fraction survival was estimated by calculating the
probability that an individual survives until the next day given a
certain chemical concentration. The fraction survival on day nwas
subsequently calculated by multiplying the survival probabilities
of all preceding days (see Supplemental Data for equations). A
comparison of the measured and estimated effects for crustaceans
and fish mainly showed an overestimated mortality when using a
model with stochastic death assumptions (Supplemental Data,
FigureS6) that underlined that neither of themodel hypotheseswas
most valid for toxicodynamicmodeling. This is in accordancewith
experimental and modeling studies that estimated the survival of
Gammarus pulex in propiconazole exposure [25] and the time to
stupefaction in zebra fish (Brachydanio rerio) exposed to
benzocaine and lethality in mosquitofish (Gambusia holbrooki)
exposed to sodium chloride [51].

Implications and recommendations

A visual comparison of our results to the results of the
DEBtox model [7,8], a toxicokinetic–toxicodynamic model,
showed that the DEBtox model fitted better to the measured
survival data than the OMEGA model for D. magna exposed to
pyrene and fluoranthene and P. promelas exposed to trime-
thylbenzene. For P. promelas exposed to naphthalene, perfor-
mance was comparable between the 2 models. Compared with
OMEGA, the DEBtox model includes more information on
energy fluxes in organisms, such as the volume-specific costs
for structure and fraction of reserve flux to maturation [52]. Yet,
experimental observations needed as input for DEBtox can be
missing for species and chemicals as most toxicity experiments
are not designed with a DEB-based analysis in mind [53].

We assumed the exposure concentration to be constant
over time, which is in accordance with the survival experi-
ments in which the test solutions were changed daily or every
other day [7–9,14]. Contrastingly, in field situations concen-
trations of oil can decrease rapidly as a result of processes
such as physical dilution [54]. Exposure conditions after open
ocean spills are therefore expected to be of short duration
(e.g., hours), which is in the range where our model
overestimated the mortality. In theory, the model can be
used for fluctuating exposure concentrations; yet constant
exposure concentrations already yielded deviations that
require additional research.

In conclusion, the estimated time-varying survival gener-
ally deviated from the measured survival dynamics for
crustaceans and fish exposed to 8 oil constituents. The
average uncertainty in the generic OMEGA model, expressed
as the RMSE, was 0.25 (minimum–maximum, 0.04–0.67) on a
scale between 0 and 1. Thus, the model based on the CBB
approach failed to adequately predict the lethal effects of
chemicals with a baseline toxicity (narcosis). Possible
explanations for the deviations between model estimates
and observations may include uncertainties in model
parameters as well as incorrect assumptions regarding the
absence of biotransformation products, the constant LBB, and
the steady state of aromatic hydrocarbon concentrations in
organisms. Model performance might be improved by
including a delay between accumulation and effect, for
example, by addition of a damage factor as is done in the
damage assessment model [48], a time-varying LBB instead
of a constant LBB, or toxic effects induced by biotransforma-
tion products. In short, a more complex model approach than
the generic approach used in the present study is needed to
predict toxicity dynamics of narcotic chemicals.

Supplemental Data—The Supplemental Data are available on the Wiley
Online Library at DOI: 10.1002/etc.3508.
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