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Abstract 

Studying offshore natural and artificial hard substrates in the southern North Sea (51ºN–57ºN/1ºW–9ºE), the invasive introduced Japanese skeleton 
shrimp Caprella mutica Schurin, 1935 was found to co-exist with the native Caprella linearis (Linnaeus, 1767) only on near-shore locations that 
had an intertidal zone (e.g., wind farm foundations). In contrast, on far offshore and strictly subtidal locations, such as shipwrecks and rocky reefs, 
only C. linearis was found. Based on these exploratory observations, we hypothesised that artificial structures that are only subtidal are inhabited 
exclusively by C. linearis, and never by C. mutica. To test this hypothesis and understand factors driving each species’ habitat preferences, habitat 
suitability models were constructed using generalised additive models, based on samples collected in 2013–2015 from offshore gas platforms, 
buoys, shipwrecks, and rocky reefs and combined with data from other published and unpublished surveys (2001–2014). The models showed that 
the presence of C. mutica is explained by the availability of intertidal and floating hard substrates, suspended particulate matter density (SPM), 
mean annual sea surface temperature, salinity, and current velocity. The C. linearis model included subtidal hard substrates, SPM, salinity, 
temperature, and current velocity. The modelled distributions showed a significant difference, demonstrating that C. linearis’ habitat preference 
does not fully overlap with that of C. mutica. Thus, the native and alien Caprella species are likely to be able to co-exist in the North Sea. 
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Introduction 

Non-indigenous invasive species can threaten native 
species and cause extinctions (Simberloff 2010). In 
the marine environment, no extinctions have been 
directly linked to invasions, but invasive species may 
still drive native species to potentially less preferred 
habitats (Hill and Lodge 1999). This distribution shift 
can prevent extinction of the native species 
(Gurevitch and Padilla 2004) but alters the local 
species community. 

Fast-growing introduced species are likely to 
establish viable populations after introduction (Sakai 
et al. 2001). The invasive Japanese skeleton shrimp 

Caprella mutica Schurin, 1935, a caprellid amphipod, 
has fast reproductive capabilities (Cook et al. 2007b; 
Shucksmith et al. 2009). Caprella mutica females 
can release their first brood within 24–26 days after 
they themselves hatch, allowing a rapid expansion 
once introduced (Cook et al. 2007b). In its native 
range in north-east Asia (Schurin 1935; Ashton 
2006), it is found associated with macro-algae in 
shallow water (Fedotov 1991; Ashton et al. 2007) and 
on aquaculture structures (Kawashima et al. 1999). 
Caprella mutica was first recorded in Europe in the 
Netherlands in 1994, and only 14 years later it had 
been identified on all coasts along the North Sea, 
English Channel, and Celtic Sea (Platvoet et al. 1995; 
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Cook et al. 2007a). Using mitochondrial DNA, 
Ashton et al. (2008) noted that C. mutica may have 
been initially introduced to European waters in 
Scotland and Norway, with secondary dispersal from 
there. Such secondary dispersal is most likely aided 
by flotsam and human activities, e.g., ship traffic and 
aquaculture (Ashton 2006).This amphipod is known 
to cling to ship hulls, which may be an important 
factor for longer range transportation (Cook et al. 
2007a; Frey et al. 2009; Adams et al. 2014; Zabin et 
al. 2014). Caprella mutica is able to survive 20 days 
without food, enabling high survival during long 
transportation periods (Cook et al. 2007b). 

Several caprellids are native to North Sea waters 
(Guerra-García 2014). Caprella linearis (Linnaeus, 
1767) is one of the most common species (Bate and 
Westwood 1868; Hoek 1889; Stock 1955; Guerra-
García 2014). Similar to C. mutica, this species 
associates with fouling organisms on hard substrates 
(Guerra-García 2002; Page et al. 2006; Strong et al. 
2009; Coolen et al. 2015a). For example, C. linearis 
is often found clinging to the surfaces of the sponge 
Halichondria panicea (Pallas, 1766), algae, and 
biogenic reefs (Bate and Westwood 1868; Peattie and 
Hoare 1981; Drent and Dekker 2013). Anecdotally, 
C. mutica and C. linearis have been observed 
independently on natural rocky intertidal locations 
(Guerra-García 2002; Wasson et al. 2005) and 
sympatrically on artificial structures (Shucksmith 
2007; Macleod 2013). Caprella mutica is present in 
shallow water, at depths < 17 m (Fedotov 1991; 
Vanagt and Faasse 2014), while C. linearis is reported 
from both shallow and deeper waters (Moen and 
Svensen 2004; Cook et al. 2007a). Thus, the native 
and invasive species may co-occur and perhaps 
compete for space and food in shallow water locations. 

Both C. mutica and C. linearis are observed on 
anthropogenic structures (Ashelby 2005; Buschbaum 
and Gutow 2005; Page et al. 2006; Cook et al. 
2007a; Bouma and Lengkeek 2013; Macleod 2013; 
Nall et al. 2015). In the North Sea, large numbers of 
artificial structures are present, all providing potential 
habitat for both species. Several authors have suggested 
that offshore anthropogenic structures can function as 
stepping stones for invasive species (Mineur et al. 
2012; Adams et al. 2014; De Mesel et al. 2015). 
Stepping stones provide habitat in an environment 
normally unsuitable for survival (MacArthur et al. 
1967), facilitating species to spread faster to potential 
recipient locations than they otherwise could. Adams 
et al. (2014) suggests C. mutica may be transported 
by ships between the coast and offshore structures, 
which they then colonise. From there, the invasive 
species may spread even further. 

Shipwrecks (strictly subtidal) are common artificial 
structures in the North Sea (Coolen et al. 2015b). 
Many other man-made structures are also present in 
the North Sea, including buoys, wind farms and offshore 
oil and gas (O&G) installations. One difference 
between most shipwrecks and the other structures is 
that the others penetrate the surface, providing 
surface / inter-tidal habitats. All these artificial 
structures represent potential habitat for C. mutica 
and C. linearis. In previous studies of fouling 
diversity on artificial structures in the North Sea, 
only C. linearis was recorded from shipwrecks 
(Zintzen and Massin 2010; Lengkeek et al. 2013) 
while both species were recorded from turbine 
foundations of wind farms in Dutch waters (Bouma 
and Lengkeek 2013). This suggested that C. mutica 
may be excluded from artificial structures that are 
strictly subtidal whereas these could be colonised by 
C. linearis. To test this hypothesis, we reviewed 
available sampling data and conducted additional 
sampling programs of fouling communities in the 
North Sea. With advances in remote sensing and 
modelling techniques (Gayer et al. 2006; Brown et 
al. 2011), it was possible to obtain datasets with 
sufficiently fine resolution to model the combined 
effects of a range of variables on the presence of 
species (Reiss et al. 2014). In this study, we investi-
gated the distribution of C. mutica and C. linearis in 
the offshore southern and central North Sea using 
habitat suitability models based on generalised 
additive models (GAM) to determine if the habitats 
occupied differed. 

Material and methods 

Study area 

The North Sea (surface area of 575,300 km2) is a 
coastal sea in the north east Atlantic Ocean. It is 
largely surrounded by land with tidal water entering 
from the Atlantic Ocean via the English Channel to 
the south and between the United Kingdom and 
Norway to the north (southern and central North 
Sea: Figure 1). Water circulation in the North Sea is 
driven counter-clockwise by tides and wind. Sea 
surface temperatures vary between 2–8 °C in winter 
and 12–21 °C in coastal waters during summer (Otto 
et al. 1990; Rijkswaterstaat 2015). The input of 
nutrients from rivers in the surrounding countries 
has a strong influence on turbidity in coastal zones 
(Brockmann et al. 1990; Figure 2). 

The seafloor of the North Sea largely consists of 
sandy and muddy (mobile) sediments, interrupted by 
zones of coarse material, mainly gravel and rocks 
(Coolen et al. 2015a). The area covered with coarse 
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Figure 1. Caprellid distributions in the southern and 
central North Sea. Locations with non-native 
Caprella mutica only: red dots, with native Caprella 
linearis only: yellow dots, with both species: black 
dots, with neither species: white dots. 

Figure 2. Mean annual sea surface suspended 
particulate matter concentration (SPM) in g.m-3. 

 

substrates is about 100,000 km2 (estimated from 
EMODnet 2015 data). 

Many artificial structures are present in the North 
Sea. In Belgian, Dutch and German North Sea waters 
alone there are 4,700 buoys and other navigational 
aids (Afdeling kust – Flemish Ministry of Mobility and 
Public Works – Agentschap Maritieme Dienstverlening 

en Kust, Belgium [unpublished data]; Bundesamt 
für Seeschifffahrt und Hydrographie [BSH] 2015; 
Ministry of Infrastructure and Environment – Directo- 
rate-General Rijkswaterstaat 2015). Many more are 
present in British, Danish and Norwegian waters. 
There are at least 27,000 shipwrecks (Coolen et al. 
2015b), 1,397 O&G production installations (OSPAR 
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Figure 3. Map with locations of all artificial 
structures (black dots) used for modelling. Depth 
contours as in Figure 1. 

 

Commission 2013), and about 1,575 wind turbines 
(estimated from EWEA 2015) in the North Sea 
(Figure 3). 

Acquisition of samples 

We collected 150 samples from 64 unique locations 
in the Dutch and British Exclusive Economic Zones 
of the North Sea. Samples were extracted from 
different sources, between 2013 and 2015. 

— Mixed macrofauna samples were obtained from 
offshore gas production installations, shipwrecks, 
the Borkum Reef Grounds, and Texel Rough. 
We used surface supplied diving equipment 
(platforms) and scuba equipment (all other 
objects). We collected samples using an airlift 
sampler fed by surface supplied air or by air from 
side-mounted scuba tanks. A 500 cm2 frame was 
attached to the sampled surface and the surface 
scraped clean using a putty knife. The suction 
part of the airlift was held close to the putty knife 
to collect the scraped specimens, which were 
deposited in a 500 µm mesh size net. The methods 
used are described in more detail in Coolen et al. 
(2015a); 

— In addition to airlift sampling, we actively 
searched for caprellids on additional shipwrecks 
during wreck inventories in 2013–2015. During 
these dives we searched for caprellids for at least 

15 minutes, or until at least 25 specimens were 
collected from different surfaces. Caprellids are 
easily spotted under water due to their elongated 
bodies protruding from the surfaces they cling to. 
We followed methods also applied in Coolen et 
al. (2015b). About 50 dives (including airlift 
sampling) were made in water depths between 20 
and 45 meters between 2013 and 2015; 

— During the diving expeditions described above, 
we did not survey every location visited, but 
inspected ghost fishing nets removed from the 
ship wrecks by other scuba divers for presence of 
caprellids at some locations; 

— During inspection, repair and maintenance (IRM) 
work by SSE divers on offshore gas installations, 
caprellids clinging to divers suits were collected 
opportunistically from the suits after the IRM 
divers submerged. Both species tend to cling to 
clothes and working gear when removed from 
the substrate (pers. obs. J.W.P. Coolen); 

— During IRM work on offshore buoys in Dutch 
waters, qualitative macrofauna samples were 
taken from the marine growth left on deck after 
cleaning of the buoys. At all buoy locations, 
about 1 litre of mixed macrofauna with mussels 
was collected by the IRM vessel crew and frozen 
in a household freezer; and 

— Eight macrofauna samples were obtained from a 
gravel reef and the surrounding sandy sediments 
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in the Borkum Reef Grounds using a box-corer 
(0.076 m2). Only samples with >15 cm penetration 
depth were retained. Detailed methods are 
described in Coolen et al. (2015a). 

All samples were stored in a borax-buffered 
formaldehyde-seawater solution (6%) except the 
buoy samples, which were frozen in a −20 °C freezer. 
All observed caprellids were identified to the lowest 
taxonomic level possible, using the World Register 
of Marine Species (WoRMS Editorial Board 2015) 
as a standard for taxonomical nomenclature. For 
identification, keys by Stock (1955), Larsen (1998) 
and Guerra-García (2014) were consulted. 

Additional presence-absence data 

Further data with presence-absence observations of 
C. mutica and C. linearis were acquired from 
published and unpublished sources. In order to 
ensure that only true absence data were included, 
confirmation that both species were sought was 
asked from the people involved in creating the data. 
If such confirmation was not possible, the species 
was excluded from the model data for that specific 
dataset (NA in supplementary Table S1). If the 
identification of both species was unsure, the full 
dataset was excluded. The following sources were 
included in the analysis: 

— Macrofauna surveys at wind farms: Dutch – 
Egmond aan Zee (Bouma and Lengkeek 2013) 
and Princess Amalia Wind Farm (Vanagt and 
Faasse 2014), Danish – Horns Rev 1 (Leonhard 
and Frederiksen 2006), German – Alpha Ventus 
and FINO 1 research platform (Krone et al. 2013; 
Gutow et al. 2014) and Belgian – C-Power and 
Belwind (De Mesel et al. 2015); 

— Invasive species surveys around the Shetland 
Islands (unpublished data supplied by Shucksmith 
and Shelmerdine, NAFC Marine Centre, 2015); 

— Surveys of wrecks in Belgian waters (Zintzen 
and Massin 2010); 

— Post drill surveys near the German A6-A 
installation on the Dogger Bank (Glorius et al. 
2014a) and the German L1-2 installation in the 
Borkum Reef Ground area (Glorius et al. 2012); 

— Baseline survey for a proposed pipeline between 
the German A6-A installation and Danish Ravn 
platform (Glorius et al. 2014b) and a proposed 
exploration well in the German B11-5 block on 
the Dogger Bank (Glorius et al. 2013); and 

— Buoy surveys in Belgian waters between 1998 
and 2014 (Kerckhof, unpublished data). 

A dataset of all locations is provided as online 
supplement and the data obtained from newly 
sampled locations were deposited in the Dryad Digital 
Repository (Coolen et al. 2016). 

Model creation 

The predictor variables used to model the presence 
and absence of C. mutica and C. linearis (Table 1) were 
obtained from various sources and included mean 
annual sea surface temperature (MASST), salinity 
(MASSS), current velocity (MASSCV), suspended 
particulate matter (SPM) and three types of hard 
substrates; subtidal (SHS), intertidal (IHS) and 
floating hard substrate (FHS). The categorical hard 
substrates location data were converted to presence 
(1) and absence (0) raster data (presence-absence, 
PA). Combination into a single factor variable was 
not possible since offshore installations placed on 
the sea bottom contain both subtidal and intertidal 
substrates. Sea bottom depth was initially considered 
as a possible predictor variable but was not included 
in the models because the available data only 
included bottom depth and did not reflect the true 
local depth, e.g. on intertidal or floating locations. 

Data for all species were combined into a single 
dataset (Table S1). Within this dataset, all observa-
tions were converted to PA data to compensate for 
differences in sampling methods. Using ArcGIS 
10.2.1.3497 for Desktop (ESRI, Redlands, CA), both 
species presence-absence and predictor variable data 
were fitted to 1 km square grid cells extending 
between 50ºN and 61ºN, and 4ºW and 9ºE. A subset 
of unique locations from an area outside the dataset 
was excluded at this stage but used for later 
validation of the optimised models. This subset 
comprised the data from the buoy and wind farm 
surveys in Belgium and the September 2015 wreck 
survey. Every grid cell containing an observation of 
presence or absence of either C. mutica or C. linearis 
was exported, including the value of each predictor 
variable per cell. This resulted in a training dataset 
with PA observations of 160 locations for C. mutica 
and of 137 locations for C. linearis. 

For analysis, R version 3.2.0 (R Core Team 2015) 
and RStudio version 0.98.1103 (RStudio 2014) were 
used. Data were explored following methods descri-
bed in Zuur et al. (2010). Using Cleveland dotplots, 
boxplots, pairplots, Pearson correlation coefficients, 
variance inflation factors, and multi-panel scatterplots 
(Cleveland 1985; Sarkar 2008; Dormann et al. 2013) 
the presence of outliers, multi-collinearity, relationships 
and interactions were analysed for combinations of 
all caprellid observations and predictor variables. 
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Table 1. List of variables used in the habitat suitability models for Caprella mutica and Caprella linearis with description of the 
variable, units used, study period, and data source. 

Variable Description Units Study period Source 

MASST Mean annual sea surface temperature °C 2002–2010 MARSPEC (Sbrocco and Barber 2013) 

MASSS mean annual sea surface salinity  1955–2010 MARSPEC (Sbrocco and Barber 2013) 

MASSCV Mean annual sea surface current velocity m.s-1 2009 Copernicus EU project (MYOCEAN 2015a) 

SPM 
Mean annual density of suspended 

particulate matter 
g.m-3 2014–2015 Copernicus EU project (MYOCEAN 2015b) 

SHS 
Subtidal hard substrates: shipwrecks, 

coarse sediments and reefs, wind farms, 
O&G platforms 

Presence / 
absence 

Unknown/ 
various 

OSPAR (2013), wrecksite.eu (Lettens 2015), 
(BSH; 2015), (EMODnet) Seabed Habitats 

project (EMODnet 2015) 

IHS 
Intertidal hard substrates: wind farms, 
O&G platforms, coastal natural hard 

substrates 

Presence / 
absence 

Unknown/ 
various 

OSPAR (2013) and the EMODnet Seabed 
Habitats project (EMODnet 2015) 

FHS Floating hard substrates: buoys 
Presence / 
absence 

2015 
BSH (2015), Rijkswaterstaat (2015) Flemish 

Ministry of Mobility and Public Works (2015) 

 

Species distribution often shows a non-linear 
relation with continuous abiotic data such as 
temperature (Austin 2007). Therefore, a GAM was 
created for both species, using the gam function in 
the mgcv package (Wood 2011). The data were 
modelled using the Bernoulli distribution with logit 
link function. GAMs are prone to overfitting (Wood 
and Augustin 2002); therefore, the number of knots 
for the smoothers for the continuous variables was 
limited to four. All continuous variables were initially 
included as smoothers and the need for smoothing 
evaluated during model optimisation. The initial full 
model took the following form [s(*) indicates 
smoothed variables]: 

 

ܵܪܫ	~	ݏ݁݅ܿ݁݌ݏ	݂݋	݁ܿ݊݁ݏ݁ݎܲ ൅ ܵܪܵ ൅ ܵܪܨ
൅ ሻܶܵܵܣܯሺݏ ൅ ሻܵܵܵܣܯሺݏ
൅ ሻܸܥܵܵܣܯሺݏ ൅  ሻܯሺܵܲݏ

 

To exclude predictor variables and optimise the 
models, backward selection using Akaike Information 
Criteria (AIC; Akaike 1973) was combined with 
ecological evaluation of the influence of included 
and excluded effects. The optimal models were 
validated to verify the underlying assumptions. 
Model residuals were plotted against fitted values to 
analyse homogeneity of variance and against all 
covariates used during model selection to assess 
model fit. The part of the data that was excluded at 
the beginning of the analysis contained 69 locations 
for C. mutica and 63 for C. linearis. This dataset was 
used to validate the predictions of the models 
using a generalised linear model (GLM). The relation 
between C. mutica and C. linearis was then modelled 

using a GLM and C. mutica presence was added to 
the validated C. linearis model to evaluate this 
relation in combination with the predictor values, 
following Ros et al. (2015). 

With the resulting models and the full dataset of 
predictor variables, a presence absence prediction 
raster was calculated using the predict.gam function 
(Wood 2011). To test for differences between the 
distributions of C. mutica and C. linearis, the 
presence absence predictions of both species were 
compared using a Students T-Test for paired 
samples. The resulting presence absence prediction 
grids for both species were visualised using ArcGIS. 

Results 

Obtained data 

From 289 possible locations C. mutica was present 
74 times and C. linearis 41 times. Within these 
locations, C. mutica and C. linearis only co-existed 
in two wind farm locations near the Dutch coast 
(Table S1; Figure 1). Caprella mutica was only 
present on floating objects or intertidal offshore 
structures. C. mutica was never observed on any of 
the subtidal shipwrecks or rocky reef locations. Most 
C. linearis observations were from offshore 
locations with intertidal or subtidal hard substrates 
with a few observations on floating hard substrates. 
On most wrecks, C. linearis was present as well as 
on most O&G installations, and the rocky reefs of 
the Borkum Reef grounds, and the Texel Rough. 
Caprella mutica and C. linearis only co-occurred at 
intertidal locations. Neither species was observed on 
any of the sandy sediment locations. 
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Figure 4. Predicted relations between environmental 
variables and probability of Caprella mutica presence 
for: mean annual sea surface temperature (MASST; °C), 
mean annual sea surface salinity (MASSS), mean 
annual sea surface current velocity (MASSCV; m.s-1), 
and mean annual density of suspended particulate 
matter (SPM; g.m-3). Dashed lines show 95% 
confidence interval, short vertical lines on the x axis 
show the density of samples in the model. 

Figure 5. Predicted relations between environmental 
variables and probability of Caprella linearis presence 
for: mean annual sea surface temperature (MASST; °C), 
and mean annual sea surface current velocity 
(MASSCV; m.s-1). Dashed lines show 95% confidence 
interval, short vertical lines on the x axis show the 
density of samples in the model. 

 

Model selection and visualisation 

During model selection for C. mutica, all predictor 
variables from the initial full model were included in 
the final model. All the continuous data (temperature, 
salinity, current velocity and SPM) were left in the 
model as non-linear terms (Figure 4). The resulting 
model to predict the presence and absence of C. 
mutica in the North Sea was: 

 
െ	~	݁ܿ݊݁ݏ݁ݎ݌	ܽܿ݅ݐݑ݉.ܥ 7.3401 ൅ 1.6232 ∗ ܵܪܫ

൅ 1.7425 ∗ ܵܪܵ ൅ 1.8128 ∗ ܵܪܨ
൅ ሻܶܵܵܣܯሺݏ ൅ ሻܵܵܵܣܯሺݏ
൅ ሻܸܥܵܵܣܯሺݏ ൅  ሻܯሺܵܲݏ

 
Within this model, significant effects were found for 
temperature (p = 0.043), salinity (p = 0.015), current 
velocity (p = 0.014) and SPM (p = 0.013), with SPM 
showing a positive effect in most of the data range. 
Effects of floating (p = 0.059, intertidal (p = 0.141) 

and subtidal hard substrates (p = 0.059) were non-
significant but had explanatory value and were 
therefore kept in the model. The deviance explained 
by the model was 57.2% with an adjusted r2 of 0.517. 

During model selection for C. linearis, floating 
hard substrates were removed since inclusion of this 
variable resulted in a strong negative effect, and AIC 
evaluation forced subsequent removal of subtidal 
hard substrates from the model. The removal of 
floating hard substrates (keeping subtidal hard 
substrates) made more ecological sense. After 
removal of floating hard substrates, the AIC score 
for the model with subtidal hard substrates was 
lower than without. Intertidal hard substrates was 
removed as this had a low explanatory value 
resulting in a lower AIC for the model without 
intertidal hard substrates. The smoothers for both 
salinity and SPM were linear (edf = 1). Temperature 
and current velocity were included as non-linear 
terms (Figure 5). The resulting model to predict the 
presence and absence of C. linearis was: 
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.ܥ ~	݁ܿ݊݁ݏ݁ݎ݌	ݏ݅ݎ݈ܽ݁݊݅ 	െ 66.6783 ൅ 1.3725 ∗ ܵܪܵ
൅ 1.9492 ∗ ܵܵܵܣܯ െ 0.4642
∗ ܯܲܵ ൅ ሻܶܵܵܣܯሺݏ ൅  ሻܸܥܵܵܣܯሺݏ

 
Significant effects were found for subtidal hard 
substrates (p = 0.036), temperature (p <0.001), 
salinity (p = 0.008) and SPM (p = 0.020). Contrary 
to C. mutica, SPM had a negative effect on the 
presence of C. linearis. Current velocity was non-
significant (p = 0.231) but did explain part of the 
deviance and so was kept in the model. The 
deviance explained by the model was 49.9% with an 
adjusted r2 of 0.529. 

The predicted distributions differed significantly 
(t-test, t = 27.875, p <0.001). The relation between 
C. mutica and C. linearis was non-significant (GLM, 
p = 0.529) and inclusion of C. mutica presence in the 
C. linearis model resulted in a higher AIC than the 
validated model without C. mutica as well as a non-
significant effect for C. mutica (p = 0.111). 

The training set for the C. mutica model included 
data from the northern North Sea but the C. linearis 
set did not. Furthermore, no other data were obtained 
from the North Sea area north of the Dogger Bank. 
Therefore the model validation and visualisation 
were limited to the southern and central North Sea 
(51ºN–57ºN / 1ºW–9ºE). Validation showed the 
model for C. mutica explained 37.5% of the 
deviance of the validation dataset (GLM, p = 0.007) 
and for C. linearis it explained 20.3% of the 
deviance (GLM, p = 0.005). This is 66% and 40% of 
the deviance explained by the main models, respecti-
vely. The model visualisations showed C. mutica 
was highly suited to nearshore waters and partially 
suited to artificial structures that were floating or 
had intertidal surfaces in more offshore waters 
(Figure 6). Caprella linearis was highly suited to 
both nearshore to offshore waters and was suited to 
locations with completely subtidal reefs (Figure 7). 

Discussion 

The modelled distributions of the alien, invasive, C. 
mutica and native C. linearis showed a significant 
difference. Caprella mutica occurred more frequently 
nearshore whereas C. linearis occurred more 
frequently offshore. Suspended particulate matter 
(SPM) density, which includes detritus, the main 
food source for both species (Guerra-García and 
Tierno de Figueroa 2009), had a contrasting effect on 
the species. SPM had a significant positive effect on 
the presence of C. mutica and a negative effect on 
the presence of C. linearis. This suggests that C. 
linearis prefers habitats with lower levels of SPM, 

such as waters that are far offshore (Brockmann et 
al. 1990; Jickells 1998). 

There was a clear negative non-linear relation 
between current velocity and presence of C. mutica. 
Macleod (2013) also demonstrated the negative impact 
of high currents on C. mutica. Current velocity was 
included in the model for C. linearis, but there was 
no significant effect. This is in line with findings by 
Macleod (2013) who attributes this to the smaller 
body size of C. linearis, mean adult length 5.12 mm, 
compared to C. mutica, mean adult length 11.39 mm 
(Shucksmith et al. 2009). However, intertidal sites are 
more exposed to other hydrodynamic factors such as 
wave induced currents, resulting in higher disturbance 
than is present at subtidal sites (England et al. 2008). 
Guerra-García (2001) observed that caprellid species 
on wave-exposed sites were larger than those on 
sheltered sites. These findings contradict with our 
results and should be explored in future models, by 
including, for example, mean wave agitation as an 
additional factor (e.g., Dutertre et al. 2013). 

Both caprellid species showed a significant non-
linear relation with mean annual sea surface 
temperature, with an optimum between 11 and 12 °C 
for C. linearis and an optimum at lower 
temperatures, <11 °C, for C. mutica. Boos (2009) 
reported a significant increase of C. mutica mortality 
when experimentally kept at continuous tempera-
tures >20°C. Caprella mutica may have a preference 
for the lower range of average temperatures in the 
North Sea which may explain the limited reports of 
C. mutica presence from southern Europe (Cook et 
al. 2007a but see Almón et al. 2014), where mean 
annual sea surface temperatures are between 19 and 
21 °C, with over 25 °C for summer averages (Skliris 
et al. 2012). Caprella linearis is also known from 
northern waters with lower temperatures than 
observed here (Larsen 1998). Shucksmith et al. 
(2009) suggest temperature as well as salinity play a 
role in the co-existence of both species. Salinity had 
a small but significant effect on C. linearis, while C. 
mutica showed a non-linear relation that may partly 
be explained by the lack of data from the central to 
northern North Sea, where the salinity is between 
34.5 and 35. The model visualisation (Figure 6) was 
limited to the area with salinity <34.5. 

Notable was C. mutica’s association with shallow 
water objects, which meant they had a high potential 
to encounter rafts, such as macroalgae. Both C. 
mutica and C. linearis are known to use such rafts 
(Thiel and Gutow 2005). Rafting may have aided in 
the rapid dispersal of C. mutica in European waters. 
Buschbaum and Gutow (2005) propose that C. mutica 
may have colonised Helgoland using rafts, and Ashton 
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Figure 6. Predicted habitat suitability Caprella 
mutica (red = high and green = low). 

Figure 7. Predicted habitat suitability Caprella 
linearis (red = high and green = low). 

 

(2006) showed this species’ ability to use drifting 
algae for dispersal over distances > 5 km. Caprella 
linearis may have colonised intertidal locations in a 
similar manner. However, to colonise strictly 
subtidal reefs, rafting does not help since drifting 

objects are unlikely to reach a sub-tidal-only location. 
The colonisation of these locations may have been 
aided by objects transported by currents near the 
bottom, such as free rolling sponges that have been 
observed in the southern North Sea (pers. obs. 
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J.W.P. Coolen). A combined preference for shallow 
waters and high SPM density, explains why C. 
mutica was absent from intertidal hard substrate that 
was far offshore while C. linearis was present there. 
In the current study C. mutica was never observed at 
depths >17 m. Caprella mutica is known from 
depths between 0 and 17 m and C. linearis between 
0 and 65 m (Fedotov 1991; Moen and Svensen 2004; 
Vanagt and Faasse 2014). Our observations confirm 
that C. linearis is able to occupy deeper locations, 
such as wrecks, which are outside C. mutica’s 
preferred depth range. Offshore hard substrates are 
scarce in the North Sea. Therefore, artificial hard 
substrates likely play an important role in the 
distribution of C. linearis in offshore waters. 

Conflicting with the absence of C. mutica from 
deep subtidal hard substrates was that our models 
showed that C. mutica presence was partly explained 
by the presence of subtidal hard substrates. This resulted 
because near-shore installations were modelled as 
being both intertidal and subtidal habitats. Our 
models had a high “predictor to response variable” 
ratio, which may cause overfitting (Babyak 2004) 
and decrease model accuracy (Vittinghoff and 
Mcculloch 2006; Wisz et al. 2008). However, the 
models were validated with an independent dataset 
that demonstrated their ability to predict the 
presence of the modelled species. The deviance 
explained by these predictions was limited to 37.5% 
for C. mutica and 20.3% for C. linearis. To improve 
these percentages, more data are needed and 
additional explanatory variables such as mean wave 
agitation need to be explored. Further model 
improvement could include using not only mean 
annual values for predictor variables but also annual 
maxima or minima, for example for sea surface 
temperatures. We limited the prediction area to the 
southern and central North Sea because only a limited 
amount of data were available for the northern parts. 
Extrapolations to other areas should be validated 
using additional survey data. 

Habitat selection is dependent on competition 
between species and competition between species is 
habitat dependent (Morris 2003): strong competitors 
in one habitat may be less competitive in another 
habitat. This was shown by Ros et al. (2015) for the 
relationship between other native and non-native 
caprellids around the Iberian Peninsula. There, the 
non-native species was dominant in more southern 
waters that were warmer and saltier. In the present 
study, no data on C. linearis distribution prior to and 
immediately after the introduction of C. mutica to 
the North Sea were available. We were therefore 
unable to draw conclusions about if competition 

from C. mutica had displaced C. linearis from former 
habitats. In any case, hard deep water habitats, 
including artificial structures, represent refuges for 
C. linearis, where populations can survive away from 
possible competition from C. mutica. 
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