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Ecological niche models (ENMs) are commonly
used to calculate habitat suitability from species’
occurrence and macroecological data. In invasive
species biology, ENMs can be applied to anticipate
whether invasive species are likely to establish in an
area, to identify critical routes and arrival points, to
build risk maps and to predict the extent of
potential spread following an introduction. Most
studies using ENMs focus on terrestrial organisms
and applications in the marine realm are still
relatively rare. Here, we review some common
methods to build ENMs and their application in
seaweed invasion biology. We summarize methods
and concepts involved in the development of niche
models, show examples of how they have been
applied in studies on algae and discuss the
application of ENMs in invasive algae research and
to predict effects of climate change on seaweed
distributions.
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Abbreviations: AUC, area under the receiver operat-
ing characteristic curve; BRT, boosted regression
trees; ENMs, ecological niche models; GAM, gener-
alized additive model; GARP, genetic algorithm for
rule-set prediction; GIS, geographic information sys-
tem; GLM, generalized linear models; MaxEnt, max-
imum entropy; PAR, photosynthetically active
radiation; SDMs, species distribution models; SST,
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The distribution of seaweed species is strongly
affected by environmental factors at global (e.g.,
Adey and Steneck 2001, Miiller et al. 2009), regio-
nal (e.g., Schils and Wilson 2006) and local scales
(e.g., Bulleri et al. 2011), offering great potential to
predict seaweed distributions based on environmen-
tal variables. Predictive modeling would be espe-
cially desirable for introduced and invasive seaweeds
because they are more likely to establish and persist
in regions that are similar to their native environ-
ment, which can be predicted with these models. As
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such, niche models can help identify areas with suit-
able habitat outside the native range, assess whether
introductions are likely to be successful, anticipate
critical routes and arrival points, and predict the
extent of potential spread following an introduc-
tion. The models can thus inform decisions about
preventive and control actions, and can cut manage-
ment costs by optimizing surveying effort according
to the predicted habitat suitability for the species
being monitored.

Generally speaking, three factors are known to
affect species distributions: abiotic conditions (A),
biotic factors (B) and movement (M) — composing
what is known as the “BAM diagram” (Fig. 1;
Soberén and Peterson 2005, Peterson et al. 2011).
Temperature can be considered the principal abi-
otic condition shaping the geographic boundaries
of seaweeds (Luning et al. 1990, Eggert 2012). Two
aspects play a central role: temperature-dependent
effects on performance (e.g., photosynthesis,
growth, reproduction) and temperature tolerance,
i.e., survival limits (Eggert 2012). The role of other
abiotic factors is more evident at smaller geographic
scales, where seaweeds’ niches are defined by
bathymetry, substrate type, available light, etc.
Among the biotic factors, competition and grazing
are the main factors shaping the distribution and
abundance of seaweeds, especially at the community
scale (see Edwards and Connell 2012). Movement
refers to the area that is accessible for the species
on an ecological timescale. This area could be lim-
ited, for example by biogeographical barriers or a
lag in postglacial recolonization, and is mainly
determined by the seaweed’s dispersal strategies
(Arrontes 2005). The intersection of these three
factors defines the native geographic distribution of
the species (Soberén and Peterson 2005).

Ecological niche models (ENMs) — and the
related species distribution models (SDMs) or habi-
tat suitability models — are based on the relation-
ships between abiotic habitat features and species’
occurrence. They characterize the aspects of the
niche that determine the species’ distribution to
produce habitat suitability maps. Some authors
make a distinction between ENMs and SDMs based
on the purpose and methodology used (e.g., Peter-
son et al. 2011) while others suggest that the use of
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Fic. 1. Representation of the species niche as the BAM Venn
diagram, with B representing biotic interactions, A representing
abiotic factors (habitat suitability), and M representing move-
ment. The species only occurs where all three conditions are
met, hence the realized distribution corresponds to the intersec-
tion of the BAM diagram. When a species is introduced outside
its native range, the movement ellipse is modified, resulting in an
expanded realized niche (right hand side). Inspired by figures
from Soberén and Peterson (2005) and Rédder and Lotters
(2009).

the more neutral term SDM would be preferable
(e.g., Elith and Leathwick 2009, McInerny and Eti-
enne 2012a), but in practice these terms are com-
monly used interchangeably. Here, the term ENM is
used to refer to all correlative distribution models,
as all these methods estimate a subset of the condi-
tions within which a species can survive and repro-
duce (i.e., the niche; Warren 2012).

Which facets of the species’ niche are going to be
modeled is an essential question without a straight-
forward answer, as the “niche” concept itself is still
under discussion (Chase and Leibold 2003, Aratjo
and Guisan 2006, Godsoe 2010, McIlnerny and Eti-
enne 2012b). Joseph Grinnell was the first to
describe a species’ ecological niche in terms of habi-
tat and climatic requirements, a concept now known
as the Grinnellian niche (Grinnell 1917). For
Charles Elton, niche would rather be the ecological
and functional role of a species in a community
(Elton 1927). Hutchinson considered the niche as
the set of biotic and abiotic conditions under which
a species is able to persist and maintain population
sizes (Hutchinson 1957). Further distinction is
made between the fundamental niche, i.e., the set
of all environmental conditions under which a spe-
cies can reproduce and survive, and the realized
niche, i.e., the subset of the fundamental niche
actually occupied by the species, which is often con-
strained by biological interactions and dispersal limi-
tation. The foundations of ENMs are rooted in
Grinnel’s and Hutchinson’s ideas, but there are
conflicting views on what models truly characterize
(Aratdjo and Guisan 2006, Kearney 2006, Soberén
2007, Jimenez-Valverde et al. 2008). What correla-
tive models estimate is a portion of the species’ fun-
damental niche, encompassing an area between the
realized species distribution and the abiotic niche
(A) of the BAM diagram (Fig. 1, represented by a
gradient). How much of the shaded region is cov-

ered by the ENM depends on methodological and
species-specific factors (Jimenez-Valverde et al. 2008,
Peterson et al. 2011).

As mentioned above, ENMs rely on a statistical
relationship between the species occurrence (and
sometimes its absence) and macroecological vari-
ables (i.e., geographic information system [GIS]
maps of climatic, physical and other environmental
factors) to infer the environmental conditions that
the species typically favors (Fig. 2). Therefore,
ENMs are correlative approaches and describe pat-
terns, not mechanisms of species distribution. Mech-
anistic (or process-based) distribution models, on
the other hand, are based on direct measurements
of species’ ecophysiological responses to environ-
mental conditions. The geographic areas where the
species would be able to live can then be mapped
by applying the model to geographically explicit
data sets of the relevant macroecological variables
(Kearney and Porter 2009). Mechanistic models are
also often applied to address questions focusing on
demographic processes at the community or local
scales (e.g., dispersal, growth). While mechanistic
models may lead to predictions more closely
approximating the fundamental niche, the correla-
tive approach has practical advantages because the
required data are much easier to obtain. This review
focuses on correlative ENMs, but we also mention
some mechanistic studies that have contributed to
our knowledge about the ecological niche of inva-
sive seaweeds.

ENMs have received much attention in the last
decade. Many studies applying ENMs, however, are
restricted to terrestrial habitats and applications in
the marine realm are still rare in comparison (Rob-
inson et al. 2011). This review covers the main ENM
techniques that can be applied to study seaweed
invasions. We outline the concepts and methods
needed to build basic niche models, show examples
of how correlative and mechanistic models have
been applied to study the niche of seaweeds and dis-
cuss the possibilities for further research using
ENMs.

BUILDING NICHE MODELS

The modeling process can be divided into 3 main
steps (Fig. 2): (i) assemble and process the input
data (i.e., occurrence records and predictor data
sets); (ii) build the model using one of the available
algorithms (e.g., generalized linear model [GLM],
maximum entropy [MaxEnt]) then evaluate it; and
(iii) map the prediction into the geographic space.

GIS data sets. GIS play a central role in storing,
mapping and manipulating spatial data for a wide
range of goals. They have been used to characterize
seaweed populations from satellite or aerial imagery
(De Oliveira et al. 2006, Theriault et al. 2006) but
also play a central role in storing the data needed
to build correlative niche models. ENMs rely on GIS
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F1G. 2. Schematic overview of the process of ecological niche modeling. The environmental conditions where species occur are
extracted from GIS environmental data sets using the geographic coordinates of species occurrences. Based on the information about the
species’ environmental preferences, a model is then optimized. The model and the environmental maps can subsequently be used to pre-
dict the habitat suitability of every location on the map. Inspired by a figure from Elith and Leathwick (2009).

data sets describing the environment, for example,
maps of sea surface temperature (SST) and nutrient
concentrations, which serve as predictor variables in
the model (Fig. 2). The data sets are typically raster
layers, meaning that they are composed of a geo-
graphic grid of square pixels in which each pixel
represents the value of the variable at that geo-
graphic location (Pauly and De Clerck 2010). The
size of the pixels defines the spatial resolution of
the raster (also called grain size), and typically
ranges from a few meters to >100 km depending on
the data source.

The spatial scale in ENMs includes both the spa-
tial resolution of the raster and its extent (i.e., the
covered area; Guisan and Thuiller 2005). The spa-
tial scale affects the results obtained with ENMs and
is an important choice that has to be made depend-
ing on the purpose of the study and data availability
(Elith and Leathwick 2009, Pauly et al. 2011b).
Studies aiming to understand microhabitat and eco-
logical variables that vary over small geographic dis-
tances (e.g., substrate or wave exposure) should use
rasters that are fine enough to reflect these proper-
ties (e.g., Martinez and Viejo 2012). Models using
coarser resolution data and continental to global

extents are more appropriate to study the potential
distribution of a species as determined by macroeco-
logical niche dimensions and to predict worldwide
distributional shifts in response to global climate
change (Verbruggen et al. 2009). A comparative
study of seaweed ENMs with variables at finer
(100 m) and coarser (9 km) scales indicates that
models at both scales perform well for homoge-
neous habitats, but that a coarse scale can lead to
overprediction in spatially heterogeneous areas
(Pauly et al. 2011b). Further information about the
importance of spatial scale in niche models can be
found in the literature (e.g., Elith and Leathwick
2009, Austin and Van Niel 2011 and references
therein). Far less documented is the extra complex-
ity added to ENMs of seaweeds due to their ecologi-
cal peculiarities. Seaweeds generally grow along a
fairly narrow coastal area, where the determinants
of their distribution, like depth, temperature and
nutrients, can vary substantially at very small geo-
graphic scales. This is particularly important for
studies aiming to characterize introduction hotspots,
as many alien marine species arrive and proliferate
in human-modified areas like harbors, where the
environmental conditions are substantially different
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from the surrounding areas. The benefits versus
drawbacks of high and low resolution imagery in
such applications has to be evaluated. Another
shortcoming for marine ENMs is the scarce availabil-
ity of environmental data along a vertical dimen-
sion. The majority of the available data refer to
values at the surface of the ocean. While this infor-
mation suffices to depict macroecological patterns
of shallow-water seaweeds (Tyberghein et al. 2012),
it may fail to represent the niche of deep-water spe-
cies if no information about environmental varia-
tions along the vertical profile is provided.

Environmental rasters are commonly derived
from satellite imagery (e.g., SST) or interpolated
in situ measurements (e.g., nutrients). NASA
(http://oceancolor.gsfc.nasa.gov/), NOAA (http://
www.nodc.noaa.gov/) and several other agencies
provide remotely sensed environmental data. The
rasters are usually provided in different file formats
and spatial resolutions, making the assembly of a
uniform data set a cumbersome task. To improve
that situation, a number of projects have compiled
data from diverse sources and provide them as ras-
ters with a homogeneous resolution and format
(Table 1). AquaMaps, for example, is a tool for gen-
erating occurrence predictions based on their envi-
ronmental preferences (Kesner-Reyes et al. 2012).
Bio-ORACLE was designed with global-scale niche
modeling of shallow-water organisms in mind
(http://www.bio-oracle.ugent.be/) and has been
used to model the distribution of seaweeds (Ty-
berghein et al. 2012, Verbruggen et al. 2013). MAR-
SPEC is a high-resolution data set also designed for
niche model implementation (Sbrocco and Barber
2013). Although it does not include nutrients/
energy proxies, it incorporates a series of fine-scale
bathymetry rasters, which could prove informative
for seaweeds ENMs, especially in heterogeneous
habitats. When modeling coastal species, it is also
possible to combine the use of oceanographic and
terrestrial variables. For example, Waltari and Hick-
erson (2013) built ENMs with marine predictors
(MARSPEC) and terrestrial rasters (WorldClim) to
distinguish between Pleistocene persistence versus
recolonization in North Atlantic coastal inverte-
brates.

Species occurrence data. Occurrence records consist
of georeferenced localities (latitude/longitude)
where the species has been found. Localities where
the species does not occur, called absence records,
can also be incorporated into models. When reliable
absence records can be obtained, which is usually not
the case (Loiselle et al. 2003), it is recommended to
use them to improve predictions of species distribu-
tions (Brotons et al. 2004, Royle et al. 2012). An
alternative to absences derived from field surveys is to
randomly select localities where the species has not
been found, the so-called pseudo-absence data (Pet-
erson et al. 2011). Absence and pseudo-absence
records should only include environmentally unfavor-
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able localities when the goal is to detect the species
potential (rather than actual) distribution (Jimenez-
Valverde et al. 2008). In practice, however, it is diffi-
cult to determine whether absences result from inad-
equate surveying, seasonality, from other factors
other than environmental ones influencing the spe-
cies distribution (e.g., non-equilibrium, dispersion
limitations), or because the habitat is in fact unfavor-
able. While wusing absence/pseudo-absence data
extracted from regions further away from the species
realized distribution (intersection of the BAM dia-
gram in Fig. 1) yield model predictions nearer the
species fundamental niche, it also undesirably
increases overprediction (Chefaoui and Lobo 2008,
Jimenez-Valverde et al. 2008). Recently, new methods
have been proposed to help obtaining balanced
pseudo-absence information for invasive species
niche models (Senay et al. 2013).

ENMs designed for invasive species are frequently
based on presence-only data. Species occurrence
information is often gathered from field observa-
tions, publications, herbarium collections, or public
databases like the Ocean Biogeographic Information
System (http://www.iobis.org/) and the Marine Med-
iterranean Invasive Alien Species Database (http://
www.mamias.org/index.php). Samples lodged in her-
baria can usually be easily georeferenced, either auto-
matically with marine gazetteers (e.g., VLIMAR) or
manually with tools such as Google Earth (Verbrug-
gen etal. 2009, Pauly etal. 201la), provided of
course that the sampling locality is specified in
enough detail on the herbarium sheet.

Even though occurrence data are becoming ubiq-
uitous, their quality is often hard to assess and has
to be checked in several ways (Vandepitte et al.
2015). The first concern is the uncertainty of the
occurrence records (Graham et al. 2007a). The
accuracy of the occurrence coordinates should be
consistent with the spatial resolution of the layers,
and imprecise records should be excluded from the
model. The localities also ought to be double-
checked. A common error is to attribute an errone-
ous positive or negative sign to a coordinate, result-
ing in locations on the wrong hemisphere (Pauly
and De Clerck 2010). Visualizing the records is a
useful strategy, but we also recommend other
screening methods such as verifying whether the
records fall within the maritime boundaries of the
country they are listed under. An additional point,
which is likely to be particularly problematic for
seaweeds, is misidentification (Lozier et al. 2009).

ENM algorithms. The mathematical function or,
more broadly, the methodology applied to estimate
the species’ niche as a function of the predictor
variables is referred to as the modeling algorithm
(Peterson et al. 2011). Many algorithms have been
used for ENM applications, and we refer to the liter-
ature for a more in-depth overview of what is avail-
able (reviewed by, e.g., Franklin and Miller 2009,
Peterson et al. 2011). The algorithms differ mainly
on their mathematical principles and on the type of
input data (e.g., presence-only, presence-absence,
presence-background data). Many conventional
algorithms are regression-based, like Generalized
linear models (GLMs), Generalized additive models
(GAMs), Multivariate adaptive regression splines
and boosted regression trees (BRT). These models
are suitable when presence and absence records are
available. Algorithms that do not require absence
data include envelope methods (BIOCLIM, Busby
1991), support vector machines (Drake et al. 2006)
and MaxEnt models (Phillips et al. 2006). When
absence data are not available, some algorithms
(e.g., MaxEnt, GARP, Stockwell 1999) can incorpo-
rate into the model (random or target) background
or pseudo-absence records (Phillips et al. 2009).

Building reliable ENMs. Many choices need to be
made in the process of building niche models, and
these can have a profound impact on the resulting
model. Hence, in order to make models with good
predictive power, a number of precautions need to
be taken. A first consideration is to avoid confound-
ing factors. Modeling algorithms implicitly assume
that the input data are independent, but typically
they are not. There are two common types of spuri-
ous correlations in ENMSs: geographic bias in the
occurrence (and background) records leading to
spatial autocorrelation (Segurado et al. 2006) and
multicollinearity among predictor variables (Gra-
ham 2003).

Geographic biases in occurrence records usually
originate from the fact that some areas are more
likely to be sampled than others. For example, loca-
tions near population centers are more likely to be
sampled than remote areas. This geographically
skewed representation also leads to environmental
biases for the presence records, which can lead to
model misspecification (Segurado et al. 2006, Phil-
lips et al. 2009, Wolmarans et al. 2010, Verbruggen
et al. 2013). The effects of sample bias can be miti-
gated by using similarly biased background data
(Phillips et al. 2009, Elith et al. 2011) or density-

Macroalgae are often misidentified in collections
and high levels of cryptic diversity add to the uncer-
tainty surrounding identifications. Records based
on superficial morphological identification are
therefore inappropriate in many cases. Taxonomic
issues are problematic especially when harvesting
information from public biodiversity data sets, since
those identifications are difficult or impossible to
check.

based occurrence thinning (Hijmans 2012, Verbrug-
gen et al. 2013, Aiello-Lammens et al. 2015). For
presence-only models, biases in the background
data also have strong effects on model performance
(Acevedo et al. 2012). Generally speaking, back-
ground points are picked at random from the entire
study area, so the extent of the study area essentially
determines the background data. If the study area
does not fully represent the species’ geographic
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range, the importance of factors operating at large
scales (e.g., climate) may be underestimated (Barve
et al. 2011). On the other hand, if the study area is
overly large, the algorithm may fail to characterize
smaller scale niche features (Lobo et al. 2010). Fur-
thermore, excessively large backgrounds inflate
model evaluation scores (e.g., area under the curve
[AUC]) while adding no information to the model
(Acevedo et al. 2012). It has been argued that the
most suitable background is one that includes “the
parts of the world that have been accessible to the
species via dispersal over relevant periods of time”
(Barve et al. 2011). Model realism for seaweeds
could be enhanced, among other options, by
restricting background points to coastal pixels
(Pauly et al. 2011a), to areas where other seaweeds
have been found (Phillips et al. 2009), or through
trend surface analysis (Acevedo et al. 2012).

Multicollinearity among several environmental
predictors is expected: mean SST, for example, cor-
relates with maximum and minimum SST, and dif-
fuse attenuation can be correlated with chl a. These
relationships can lead the model to produce errone-
ous response curves to variables that do not reflect
the species physiological tolerances. Predictors that
have no ecophysiological significance for the species
can also be correlated with occurrence records sim-
ply because predictor variables vary geographically
and species have limited distribution ranges. This
results in models based on correlations that do not
reflect the species’ niche. This sort of correlation is
usually dealt with by selecting a suitable subset of
predictor variables. Many studies have addressed the
consequences of the choice of these variables
(Rodder et al. 2009, Austin and Van Niel 2011,
Verbruggen et al. 2013). Furthermore, only a subset
of the available predictor variables is generally rele-
vant for any given species and context. Prior knowl-
edge of the species’ physiological requirements can
be used to pre-select potentially relevant variables
(e.g., Aratjo and Luoto 2007, Elith etal. 2010,
Verbruggen et al. 2013). Multicollinearity among
predictors can also be reduced by building models
on the main axes resulting from principal compo-
nent analysis (Pauly et al. 2011a), eliminating clo-
sely correlated variables based on Pearson
correlations (Elith et al. 2010), selecting a subset of
variables that yields strong predictions (i.e., with
higher AUC values; Verbruggen et al. 2013), or a
combination of these. Studying the response curves
inferred by the model for each predictor also hints
to whether it behaves in a biologically meaningful
way in the model.

Besides avoiding spatial biases in the input data,
it is also important to use a model that is sufficiently
complex to capture the major environmental influ-
ences on the species’ distribution but that does not
overfit the data. Overfitting occurs when models
have too many parameters in relation to observa-
tions (i.e., occurrence records), therefore, reducing

complexity to fit smoother response curves is recom-
mended (Rodda et al. 2011, Warren and Seifert
2011). A general rule of thumb for regression mod-
els is that you need at least 10 samples for every
parameter in the model (Burnham and Anderson
2002). The commonly used program MaxEnt auto-
matically activates/deactivates features depending
on how many samples are available, and it can be
further adjusted using the regularization settings
(Phillips et al. 2008, Warren and Seifert 2011). High
evaluation scores for test data (e.g., AUC,.) have
been used to indicate adequate model performance
rather than overfitting, but these are sensitive to the
background as mentioned above. Several other pro-
cedures, including information criterion-based
approaches (e.g., Akaike’s information criterion)
are also available to select models with an appropri-
ate complexity (Burnham and Anderson 2002, Has-
tie et al. 2009, Warren and Seifert 2011).
Afterwards, the model needs to be evaluated. The
goal of model evaluation is to justify the acceptance
of a model for its intended purpose (Aradjo and
Guisan 2006). The evaluation methodology is inten-
sively debated in literature (e.g., Anderson et al.
2003, Peterson et al. 2008, Hijmans 2012), and
there is probably no single best approach. A com-
mon evaluation process is to check whether the
model is able to predict independent occurrence
data. Usually, the original occurrence data are sub-
divided into training and test data sets, the former
being used to infer the model and the latter to ver-
ify whether or not the resulting model predicts high
habitat suitability for test localities where the species
is known to occur (or low suitability in case
absences are available). Because the species pres-
ence (or sometimes absence) at the test localities is
known with some degree of certainty, this approach
can be used to quantitatively measure the model’s
performance. The most common metric used to
evaluate ENMs is the AUC of the receiver operating
characteristic (Pearce and Ferrier 2000). AUC values
range from 0 to 1 and models yielding scores for
the test data set (AUC) above 0.5 can be inter-
preted as better than random predictions. The
training and test data are usually obtained by ran-
domly splitting the available occurrence records in
two groups (commonly 70%-30% or 50%-50%
training and test records). The occurrences can also
be divided into training and test data multiple times
independently, and the evaluation can proceed
through bootstrap, jackknifing or kfold cross-valida-
tion (Peterson et al. 2011, Hijmans 2012). As usual,
care must be taken to avoid spatial biases when split-
ting the occurrence data into training and test data
sets. In the case of invasive species, a common prac-
tice is to calibrate the model with (training) occur-
rences from the native range and evaluating it
according to its ability to predict (test) records of
the species in the invaded area (e.g., Richardson
and Thuiller 2007). This approach, however, may
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reduce the overall predictive power of the model
due to the likely expansion of the realized Grinnel-
lian niche after transportation (Fig. 1). This issue
was tested for the invasive Caulerpa racemosa and the
best performing model was found to be the one
trained and evaluated using distribution records
from both native and invaded areas (Verbruggen
et al. 2013). Despite the perils of training models in
regions that are likely violating the equilibrium
assumption (specially in cases of recent introduc-
tion), the invaded area provides valuable informa-
tion about the species tolerance to climatic
conditions that may not be present in the native
range. Therefore, reducing sampling bias with one
of the methods cited above followed by random
assignment of all occurrence records to training
and test sets tends to yield better models (Broenni-
mann and Guisan 2008, Jimenez-Valverde et al.
2011). It is useful to note that the use of AUC has
been criticized for being sensitive to all kinds of
choices made in the modeling process (Lobo et al.
2008, Jiménez-Valverde 2012), but to our knowledge
no good alternatives have been proposed. Clearly,
field-testing the model’s predictiveness is to be pre-
ferred because this is truly independent test data
(e.g., Graham et al. 2007b), but this is not always
feasible.

Finally, it is important to note that the modeling
process is not carried out in a linear way. Instead it
is an iterative process in which changes are being
made to the model setup and analysis settings, fol-
lowed by optimization and evaluation of the model
until a reliable result is obtained.

Issues for introduced species. Besides these general
recommendations for building reliable ENMs, there
are a few particularities that have to be taken into
consideration for introduced species.

First, a central assumption of ENM that is likely
to be violated for introduced species is that the spe-
cies being modeled is in equilibrium with its envi-
ronment, in other words its occurrence in the study
region is determined by the environment and not
other factors. Naturally, the distributions of intro-
duced species are highly constrained by colonization
time lags and dispersion limitations (Vaclavik and
Meentemeyer 2012). In early stages of invasion,
models are more likely to underpredict the poten-
tial distribution when they are calibrated with occur-
rence records from the invaded area (Vaclavik and
Meentemeyer 2012). Seaweeds tend to thrive in dis-
turbed habitats like harbors, but their expansion
into natural habitats may be slower. Thus, the stage
of invasion and the absence of equilibrium of the
species in its new environment should be taken into
consideration when defining training and test data
sets and when evaluating the outputs of ENMs
(Elith et al. 2010, Jimenez-Valverde et al. 2011).

Second, the predictions made from ENMs assume
that the species retains its niche (Peterson et al.
1999, Wiens and Graham 2005). Niche conservatism

has a very central position in invasion biology appli-
cations because one assumes that a species is only
able to invade areas with similar ecological condi-
tions to that found in their native range (Peterson
2003). That a species’ niche can shift after invasion
was clearly demonstrated for an invasive weed (Cen-
taurea maculosa), for which the authors observed a
mismatch between the predicted potential distribu-
tion of native and invasive ranges (Broennimann
et al. 2007). Subsequently, shifts have been found
for many invasive species, including the cane toad
(Tingley et al. 2014), fire ant (Fitzpatrick et al.
2007), tiger mosquito (Medley 2010), earth mite
(Hill et al. 2012) and several plant species (Alexan-
der and Edwards 2010). The seaweed C. taxifolia,
which lives at different depths in its native and
invaded areas (Klein and Verlaque 2008, Katsaneva-
kis et al. 2010b), could be a niche-shifter at micro-
habitat scales.

An obvious question when observing such niche
shifts is whether they are situated at the level of the
fundamental niche or are simply a matter of
changes in the realized niche. Modification of the
fundamental niche is certainly possible in intro-
duced species, as rapid evolution in several traits
has been observed in introduced populations (e.g.,
Gordon et al. 2009, Phillips 2009, see Whitney and
Gabler 2008 for a review). Shifts in the realized
niche, however, are probably more common and
often constitute the most parsimonious explanation
for observed niche shifts, simply because expansion
of the movement ellipse is expected to correspond
to an expansion of the realized niche (Fig. 1).
These two scenarios are not mutually exclusive and
both may contribute to the observed niche shifts.
Interestingly, in several cases where niche shift was
observed, the models were able to correctly predict
the locations of introduction (Broennimann et al.
2007, Fitzpatrick et al. 2007, Medley 2010), suggest-
ing that, even for niche-shifting species, modeling
tools can be useful to predict areas at risk.

Solutions to issues typical of introduced species
are not straightforward, but a few general recom-
mendations have been made (Jimenez-Valverde
et al. 2011). One commonly used option is to use
occurrence records from both the native and
invaded regions simultaneously to build the ENM.
This has the advantage of using records that are
likely to be in equilibrium with the environment in
the native range while also including samples from
the invaded range that may provide information
about expansions of the realized niche. When feasi-
ble, combining mechanistic and correlative methods
can help to discriminate realized versus fundamen-
tal niche shifts in invaded regions (e.g., Tingley
et al. 2014). Other recommendations include using
only predictors that are linked directly to the physi-
ological requirements of the species and careful
evaluate the model to avoid overfitting (Jimenez-
Valverde et al. 2011).
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Reference Organism Invasive Modeling algorithm Scope
Assis et al. 2014, Fucus vesiculosus No Correlative: MaxEnt, North Atlantic
BRT, MARS
Béez et al. 2010, Undaria pinnatifida Yes Correlative: LBR N Spain
Bulleri et al. 2011, Caulerpa cylindracea Yes Correlative: Mixed NW Mediterranean
GLM
Burfeind et al. 2013, Caulerpa taxifolia Yes Mechanistic Australia
Crockett and Keough Caulerpa longifolia, No Correlative: BRT Port Phillip Bay,
2014, C. remotifolia, C. sedoides Australia
Glardon et al. 2008, Caulerpa Yes Correlative: MLRM Florida, USA g
Gorman et al. 2012, Laminaria No Correlative: GAM Bay of Morlaix, E
France =
Graham et al. 2007b, unitalicize No Mechanistic Global X
Graham et al. 2010, Macrocystis pyrifera No Mechanistic California, USA g
Hall and Cox 1995, Hydrodictyon reticulatum Yes Correlative: GLM New Zealand I
Jueterbock et al. 2013, Ascophyllum nodosum, No Correlative: MaxEnt North Atlantic m
Fucus serratus, . vesiculosus E
Katsanevakis et al. Caulerpa cylindracea Yes Correlative: GAMLSS Zakynthos, Greece
2010a,
Katsanevakis et al. Caulerpa racemosa varieties Yes Correlative: GAM Saronikos, Greece
2010b,
Martinez and Viejo Ascophyllum nodosum, Pelvetia No Correlative: GLM NW Iberia
2012, canaliculata, Fucus
vesiculosus, I. serratus,
Himanthalia elongata,
Bifurcaria bifurcata
Martinez et al. 2014, Himanthalia elongata, No Hybrid NW Iberia
Bifurcaria bifurcata
Neiva et al. 2014, Pelvetia canaliculata No Correlative: MaxEnt, NE Atlantic
BRT, MARS
Pauly et al. 2011a, Trichosolen Blooms Correlative: MaxEnt Global
Pauly et al. 2011b, Halimeda discoidea, No Correlative: MaxEnt Regional: Oman
Nizamuddinia zanardinii,
Tolypiocladia glomerulata
Raybaud et al. 2013, Laminaria digitata No Correlative: NPPEN NE Atlantic
Sandman et al. 2013, Fucus vesiculosus, Cladophora No Correlative: GAM Baltic Sea
glomerata, Ceramium
tenuicorne
Tyberghein et al. Codium fragile subsp. Yes Correlative: MaxEnt Global
2012, Jragile
Verbruggen et al. Halimeda No Correlative: MaxEnt Global
Verbruggen et al. 2013 Caulerpa cylindracea Yes Correlative: MaxEnt Global

MaxEnt, maximum entropy; MLMR, multiple logistic regression model; GLM, generalized linear mode; GAM, generalized addi-
tive model; GAMLSS, generalized additive models for location, scale and shape; BRT, boosted regression trees; NPPEN, non-para-

metric probabilistic ecological niche model; MARS, multivariate adaptive regression splines; LBR, logistic binary regression.

INVASIVE SEAWEED ENMS

ENMs have not been extensively used to predict
habitat suitability of invasive seaweeds or macroalgae
in general (Table 2). Most of the work has focused
on siphonous green algae, kelps and fucoids. None-
theless, the available examples span across different
spatial scales and represent correlative as well as
mechanistic approaches, which we will present in
more detail bellow. Because there are few examples,
our overview includes examples of invasive as well as
non-invasive seaweed species. At the end, we address
the particularities of using ENMs to study seaweed
invasiveness under climate change.

Correlative niche models of introduced seaweeds. Cor-
relative models have been used to investigate sea-
weed distributions at several geographic scales. At
the small-scale end of this spectrum, the studies on

distribution and microecological preferences of
Caulerpa invasive species constitute a well-known
example. Using GAM to investigate Caulerpa distri-
bution in the Saronikos Gulf (Greece), Katsanevakis
et al. (2010b) found that the species shows a bimo-
dal depth distribution pattern, with a first peak at
shallow depths (<4 m.) and a second at depths
between 15 and 30 m, contrasting with the species’
ecology in its native range where it grows between
the intertidal and 6 m depth (Klein and Verlaque
2008, Katsanevakis et al. 2010b). Using different
modeling techniques, Katsanevakis et al. (2010a)
and Bulleri et al. (2011) showed that Caulerpa takes
advantage of degraded habitats. The first study con-
cluded that dead Posidonia oceanica rhizome mattes,
fragmented meadows and rock substrates are espe-
cially vulnerable to Caulerpa invasions. Accordingly,
protection policies should ensure that Posidonia
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meadows are effectively preserved (Katsanevakis
et al. 2010a). The second study included differently
impacted areas at various ecological scales (i.e.,
habitat and community), finding distinct distribu-
tion patterns according to the scale in question
(Bulleri et al. 2011).

A few other invasive seaweeds have been subjected
to niche modeling approaches at larger geographic
scales. A correlative presence—absence model based
on macroecological predictors was used to identify
the factors that determine the successful establish-
ment of Undaria pinnatifida in northern Spain (Baez
et al. 2010). Chl concentration and photosyntheti-
cally active radiation (PAR) were suggested to best
characterize the distribution of U. pinnatifida in the
invaded area. Although the relationship between
PAR and this species distribution seems odd, as this
kelp has low light requirements, this variable is
expected to affect the overall number of species,
increasing the availability of suitable habitats (e.g.,
shadowing) for U. pinnatifida (see Bdez et al. 2010
and references therein). Proximity to urban centers
and temperature were also found to be related to
the species’ distribution, the latter being especially
important when considering the optimum tempera-
tures for the recruitment and development of sporo-
phytes. Another interesting (although not on
invasives) example is the study on Pelvetia canalicula-
ta historical biogeography (Neiva et al. 2014). By
combining molecular data with correlative models
projections for present and past distributions of this
seaweed, the authors detected a latitudinal range
shift since the last glacial period. Understanding his-
torical distributions of invasive seaweeds may also
provide valuable information regarding their
requirements for establishing in a new area.

At global scales, ENMs have been inferred for a
range of seaweed species using fairly coarse-grained
macroecological predictor variables (Bio-ORACLE).
The potential niche of Codium fragile subsp. fragile was
inferred with a MaxEnt method (Tyberghein et al.
2012). The model was based on combined presence
records from the native (Japan) and one of the
invaded areas (Europe), resulting in highly predictive
habitat suitability maps for both ranges. It also pre-
dicted other areas where the invasive subspecies is
known to occur (East coast of USA and Canada,
southern Australia, Chile). The potential spread of
Caulerpa cylindracea was also assessed at a global scale
using correlative approaches (Verbruggen et al.
2013). The resulting model suggests that C. cylindra-
cea can expand its range to nearby areas in southern
Australia where the species has been recently intro-
duced, as well as along the Atlantic coasts of Europe
and Africa. Besides potential expansions, many other
regions are predicted to have suitable environmental
conditions, where C. ¢ylindracea could establish if
introduced, including the East Coast of the USA,
parts of the Caribbean and Brazil, Southeast Africa
and Japan. The products of these global-scale ENMs

can be further scrutinized by coupling data on major
maritime routes (e.g., Roura-Pascual et al. 2009) to
pinpoint higher introduction-risk areas and advise
precautionary measures.

The underlying physiological mechanisms. The rela-
tionship between experimentally measured physio-
logical tolerances of algae and their geographic
distributions has been known for a long time (e.g.,
Breeman 1988) but physiological data have rarely
been used to generate quantitative habitat suitability
maps. Nonetheless, two studies on kelps used known
physiological requirements to predict the presence
of kelp beds in tropical deep-water habitats
(Graham et al. 2007b) and the historical extent of
kelp beds in California (Graham et al. 2010).
Although physiological responses to environmental
variables have been studied for several notorious
invasive species (e.g., Hanisak 1979, Steen 2004),
this has not resulted in mechanistic models to map
habitat suitability and potential spread yet.

While the application of mechanistic models is
still a challenge, the response curves produced by
correlative models can be used to inform experi-
mental studies on physiological tolerances. The
above-mentioned study on C. cylindracea (Verbrug-
gen et al. 2013) shows the parallels of this seaweed
distribution with environmental factors (Fig. 3).
The species appears to do best in localities with an
annual mean SST of around 20°C. The phosphate
response curve, however, is counterintuitive, indicat-
ing that the species would be less likely to occur in
waters with concentrations over 0.4 pmol - L7},
while studies indicate that lower rather than higher
nutrients limit seaweeds distributions. This results
from the collinearity between the phosphate and
SST predictors, and the fact that C. cylindracea has
only been recorded in relatively phosphate poor
waters. The global pattern of phosphate shows high
concentrations in temperate and polar regions, not
in the warm-temperate waters where this species
occurs. While the model response curves certainly
do not mirror physiological response curves, they
can contribute to our understanding and offer
hypotheses that can be further tested with physio-
logical experiments. These experiments, in turn,
can feed back into mechanistic niche models (see
the work of Rees 2003 on nutrients uptake by sea-
weeds) and further improve our understanding of
the physiological needs determining the species
niche and distribution.

Climate change. The urge to forecast how species’
invasive potential will be affected by climate change
has been leading scientists to extrapolate ENMs to
future climate conditions (Lee et al. 2008). Niche
models can be built based on the present occur-
rence data and then projected into the future to
predict species distributions in future climates (e.g.,
Martinez and Viejo 2012, Martinez et al. 2014, see
Jeschke and Strayer 2008 for a review). Future
climate rasters have been recently included in the
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FiG. 3. Response curves to different environmental predictors estimated by a correlative niche model for Caulerpa cylindracea (Verbrug-
gen et al. 2013). The model indicates higher habitat suitability in water temperatures around 20°C. Other graphs may show a counterintu-
itive pattern (e.g., phosphate). Although response curves produced by correlative models do not always reflect physiological tolerances,
they can be used to inform experimental studies and access model behavior.

Bio-ORACLE data set (Jueterbock et al. 2013),
making extrapolations to future scenarios fairly
straightforward. To date, relatively few studies with
marine organisms have done so (Robinson et al.
2011), and none that we are aware of have done it
for invasive seaweeds. One of the few examples
used correlative models to forecast the future distri-
bution of a set of keystone fucoid species in the
North Atlantic (Jueterbock et al. 2013). The mod-
els suggested that climate change would provoke
substantial distribution shifts at southern distribu-
tion edges and the potential for even larger range
extensions at the northern edges. More recently,
another study combined thermal thresholds
obtained from ecophysiological experiments, pres-
ence-absence data and future scenarios based on
climatic anomalies reported in the last decades in
order to predict potential niche shifts in kelps
(Martinez et al. 2014). This study also highlights
how the coupling of mechanistic and correlative
approaches can deliver more robust predictions to
forecast the effects of climate change.

Two issues need special attention when extrapolat-
ing ENMs of seaweeds to future climates. First, the
assumptions of equilibrium and niche conservatism
are likely to be violated when projecting models
across no-analog climates, which is the case in ENMs
featuring climate change (for a detailed discussion
and proposals to reduce the related uncertainty see
Wiens et al. 2009 and Veloz et al. 2012). The second
refers to the complex interactions of the environ-
mental factors affecting seaweeds’ survival. One
aspect of climate change is global warming, and tem-

perature is one of the most important factors shap-
ing seaweeds distribution (Eggert 2012). Global
warming is expected to move the distribution
boundaries of seaweed species polewards (Muller
et al. 2009), and large-scale analysis of herbarium
records suggest that they already have (Wernberg
et al. 2011, but see Huisman and Millar 2013).
Another aspect of global change is the expected
decrease in pH and calcium carbonate saturation,
which are likely to affect photosynthesis, growth, cal-
cification and consequent distribution of macroalgae
(Harley et al. 2012, Kroeker et al. 2013). The syner-
gistic effects of these changing environmental factors
are poorly known and are likely being overlooked in
models extrapolated to future climate conditions.
Further research on species physiological tolerances
and hybrid modeling are urgently needed to better
understand and predict the effects of climate change
on seaweed distributions.

CONCLUSIONS AND PERSPECTIVES

ENMs are valuable tools to forecast and manage
species invasions. Several of the available examples
for seaweeds indicate that both mechanistic and cor-
relative models vyield highly predictive models,
reflecting the strong dependence of seaweed distri-
butions on environmental parameters. The availabil-
ity of several user-friendly data sets mapping various
environmental dimensions of the marine ecosystem
has made building global, coarse-grained ENMs of
invasive seaweeds a much less cumbersome task. At
regional and especially local scales, additional work
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is needed to assemble data sets of relevant environ-
mental variables. The work by Pauly et al. (2011b)
shows that at least some of those variables can be
derived from high-resolution satellite imagery in
combination with ground-truthing. At local scales,
microhabitat information derived directly from field
observations can contribute insights into invasive
species’ habitat requirements.

In order to build reliable correlative ENMs, it is
crucial to take the general assumptions of ecological
niche modeling as well as the specific problems for
introduced species into consideration. Several solu-
tions are available to avoid potential problems
resulting from spatial autocorrelation, multicollin-
earity, handle the issue that introduced species are
not at equilibrium with the environment, and deal
with the problem that the realized niche inevitably
shifts to some degree in association with species’
introductions.

Spatial scale can strongly influence a model’s pre-
dictions. At continental and global scales, climate can
be considered the dominant factor affecting species
distributions, while at local scales factors like sub-
strate, biotic interactions and anthropogenic impacts
typically become more important. The various studies
carried out on invasive Caulerpa species illustrate this
very well. Although models based on temperature,
salinity, nutrients and diffuse attenuation well pre-
dicted the global distribution of the species (Verbrug-
gen et al. 2013), the degree of urbanization and
heterogeneity of the seascape play a larger role at
regional scales (Bulleri et al. 2011), while habitat
type, depth and community composition (macro-
phytes and invertebrates) determines the species’ suc-
cess at the microhabitat level (Katsanevakis et al.
2010a,b, Bulleri et al. 2011). An ecological niche
modeling study aiming to characterize algal distribu-
tions at regional scales in a heterogeneous area
(Oman) obtained very different predictions with
coarse macroecological predictors and more fine-
grained predictors that included microhabitat aspects
(Pauly et al. 2011b). Interestingly, the predictive
power of the coarse-grained and fine-grained models
was very similar, indicating that similarly relevant but
different processes are captured by the models at dif-
ferent scales. The predictions at the two scales dif-
fered especially along the heterogeneous south coast
of Oman, whereas the coasts of the more homoge-
neous Gulf of Oman had more consistent predictions
between scales. Integrating effects at different scales
in a single model can be achieved with hierarchical
(or nested) modeling approaches (Pearson and Daw-
son 2003, Morin and Lechowicz 2008, Elith and
Leathwick 2009). These methods incorporate data at
different spatial, ecological or temporal scales, often
analyzed under the same methodological perspective.

Besides the integration of different scales to cap-
ture processes acting at different levels, ENMs of
invasive species could benefit from the inclusion of
several other aspects of the species’ invasion

biology, more specifically any knowledge we may
have about the species’ ecophysiology or the move-
ment and biotic components of its niche (Fig. 1).
Hybrid models — the approach coupling mechanistic
and correlative methods — have recently been rec-
ommended to jointly explore these aspects (Gallien
et al. 2010, Dormann et al. 2012). The coupling of
dispersal models and correlative ENMs, for example,
can be used to model the spread of invasive species
(e.g., Williams et al. 2008). While this approach
clearly has potential, a study of two nonindigenous
bivalves in New Zealand yielded low predictive
power (Inglis et al. 2006). As we start gaining a
better understanding of invasive seaweed dispersal
(Arrontes 2005, Mineur et al. 2010, Gagnon et al.
2011), perhaps such approaches will become more
successful. Likewise, the distribution and density of
seaweed species at a local scale is strongly influ-
enced by biotic interactions (Scheibling and
Gagnon 2006, Edwards and Connell 2012). While
these effects may be difficult to capture in ENMs
spanning larger geographic scales, they play a cen-
tral role in predicting invasive seaweeds density
(Bulleri et al. 2011). Finally, the species’ ecophysio-
logical properties clearly have an impact on its dis-
tribution and any experimental knowledge can also
be used to ameliorate correlative models in various
ways. For instance, the results of a mechanistic eco-
physiological model of the invasive cane toad were
used to define absence points for a correlative distri-
bution model (Elith et al. 2010). Much physiologi-
cal information about invasive seaweed species is
available but it has not been integrated in ENMs so
far. Its inclusion would be especially useful when
projections need to be made outside the range of
conditions observed today.

Ongoing climate change is another aspect that
would be beneficial to incorporate into ENMs of
invasive and non-invasive seaweeds. Changes in envi-
ronmental conditions can both enable alien species
to invade regions in which they could not survive
before and reduce invasions in areas that become
environmentally unfavorable (Stachowicz et al.
2002, Walther et al. 2009). Niche models can help
to forecast the invasiveness potential of alien species
in future climate scenarios. One of the main sources
of uncertainty here is the lack of knowledge regard-
ing seaweeds physiological responses to the synergis-
tic action of changing (no-analog) environmental
factors. This apparent shortcoming is quickly being
minimized as data on seaweeds physiology and envi-
ronmental data sets for future climates become
increasingly accessible.

The fact that seaweed distributions are largely
determined by environmental conditions offers
great opportunity to use ENMs to study seaweed
invasions. The increased availability of user-friendly
marine environmental data sets and modeling soft-
ware facilitates the use of ENMs. If built with atten-
tion to the relevance of variables at different
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spatial scales, taking care to avoid the known sensi-
tivities of the methods, and evaluated critically,
ENMs can serve a purpose as predictive and man-
agement-guiding tools for seaweed invasions.
Clearly, more work is needed to develop mapped
data sets for relevant predictors at finer spatial
scales, and additional effort should be spent on
the inclusion of different scales and other types of
information such as physiology and dispersal in the
models, depending on the goal. The available stud-
ies on ENMs of invasive seaweeds and macroalgae
in general clearly show the potential of the meth-
ods to make predictions at different spatial scales,
which will hopefully stimulate further development
of the field.
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