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a b s t r a c t

The aim of this study is to assess the suitability of four spaceborne multispectral sensors (Spot 5 HRG,
Landsat 5 TM, Landsat 7 ETMþ, and IKONOS) for inter-tidal sediment characterization, in comparison to
a hyperspectral image of 4 m� 4 m spatial resolution and 116 spectral bands. Four sediment properties
were considered: organic matter content, moisture content, chlorophyll a content, and mud content. The
utilized data were a hyperspectral image and its accompanying field data. The methodology included
spectral and spatial resampling of this image to the properties of the spaceborne multispectral sensors.
Then, these resampled data were analyzed by means of unsupervised classification. The results showed
that spaceborne multispectral data have the potential for sediment characterization. Yet, compared to the
hyperspectral image, the characterization of the different properties generally decreased. The results
showed the spectral suitability of Landsat sensors to characterize all properties and the spectral and
spatial suitability of all sensors to characterize chlorophyll a content.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The important geochemical processes that occur on inter-tidal
flats define sediment stability in relation to the physical, biological,
and chemical properties of sediments (Silva et al., 2005). The
erodibility of sediments depends on their physical structure as non-
cohesive sediments are less stable than cohesive ones (Mitchener
and Torfs, 1996). Furthermore, the presence of microphytobenthic
algae and macrofaunal species can either stabilize or destabilize
sediments (Austen et al., 1999). To investigate these processes, good
field knowledge is required. Since accurate data collection on inter-
tidal flats is often costly, inefficient, or even unattainable, remote
sensing can be a fine and resourceful alternative.

The remote sensing concept can be used for this purpose due to
the interaction of light with matter, resulting in a reflected signal
that provides information on the surface properties. For example,
fine particles or mud particles (grain size< 0.63 mm) result in
absorption at specific clay absorption features (Hunt, 1977).
Furthermore, an increase in moisture content leads to an overall
decrease of the reflectance spectrum (Muller and Decamps, 2000;
Weidong et al., 2002). Yet, at a soil dependent value of moisture
content referred to as “the cut-off thickness”, reflectance increases
m).
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as moisture content increases (Neema et al., 1987). Regarding the
biological properties of sediments, an increase in the chlorophyll
a (chl a) pigment, an indicator of the presence of micro-
phytobenthos, on the sediment surface leads to an emphasis of the
absorption dip at around 673 nm of the spectrum (Carrère et al.,
2004; Murphy et al., 2005).

Remote sensing techniques are in rapid evolution whereby
numerous and diverse research possibilities continuously arise,
especially with the increasing number of hyperspectral and multi-
spectral sensors. Nowadays, choices have to be made regarding the
suitable platforms and spectral, spatial, and temporal resolutions
that are to be used for a certain objective. Various remote sensing
acquisitions and applications have led to a successful characteriza-
tion of inter-tidal sediments (Brockmann and Stelzer, 2008). For
many, airborne hyperspectral sensors are essential instruments for
such studies as they acquire images in tens of spectral bands
providing a huge amount of useful data for sediment characteriza-
tion (Yates et al., 1993; Bryant et al., 1996; Thomson et al., 1998;
Rainey et al., 2003; Smith et al., 2004; Deronde et al., 2006).
Furthermore, such sensors offer various possibilities due to their
programmable nature that allows diverse temporal, spectral, and
spatial resolutions. Scheduling the acquisition of airborne imagery is
essential to study inter-tidal sediments as it is mostly carried out at
low tide. Although hyperspectral data are powerful and valuable,
a flight campaign is relatively expensive leading to only a few
occasional acquisitions (Thomson et al., 2003; Dalponte et al., 2009).
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Furthermore, due to its high dimensionality, image processing is
complex: the “curse of dimensionality” (Hughes, 1968).

The use of spaceborne multispectral imagery widens the
possibilities of remote sensing applications in studying and moni-
toring inter-tidal flats. Many state-of-art multispectral spaceborne
sensors have been utilized for environmental applications on inter-
tidal flats (Ryu et al., 2004; Dong et al., 2005; Belluco et al., 2006;
Sorensen et al., 2006; Barillé et al., 2010). Specifically, studies
have tested or utilized spaceborne multispectral data to carry out
morphologic change estimation (Ryu et al., 2008). Such data have
been also used to characterize sediment properties, with emphasis
on grain size distribution (Yates et al., 1993; Choi et al., 2010; Huang
et al., 2010), showing the usefulness of sensors such as IKONOS and
Landsat 5 TM, using diverse approaches.

Spaceborne multispectral sensors provide data in a wide range
of spatial and spectral scales, and their cost is relatively low. They
allow the utilization of imagery from different sensors, and thus,
increasing the possibility of obtaining a larger number of useful
images to study temporal evolution. Yet, such sensors have their
shortcomings especially due to their lower operational flexibility.

The objective of this paper is to investigate the applicability,
regarding sediment characterization, of four commonly used
spaceborne multispectral sensors, in comparison to a hyperspectral
sensor. The sensors are Spot 5 HRG, Landsat 5 TM, Landsat 7 ETMþ,
and IKONOS. They were chosen for their popular usage in envi-
ronmental applications and their high to moderate spatial resolu-
tion. The spectral and spatial aspects of these sensors were
investigated in this paper in an independent manner.

2. Study area and data set

2.1. Study area

The Molenplaat is an inter-tidal flat that has been a nature
reserve since 1997. It is about 61 ha and located in the Western-
Schelde estuary in the Netherlands (Fig. 1). The Schelde estuary is
internationally recognized for its important role in nature conser-
vation. It has one of the largest wading bird populations inWestern
Europe and several rare habitat types such as freshwater tidal
marshes. Yet, this estuary is an important shipping route and holds
sites of heavy industry (Herman et al., 2001; Adam, 2009).

2.2. Airborne hyperspectral data

On the 8th of June 2004, an image was acquired of the Molen-
plaat by means of the Hyperspectral Mapper (HyMap�) sensor at
Fig. 1. The location of the Molen
low tide and in cloud-free conditions (4 m� 4 m pixel size). Table 1
gives a summary of the useful 116 bands of the HyMap� image. For
each of the modules e visible (VIS), near-infrared (NIR), and short
wave-infrared (SWIR) e the number of bands, the spectral range,
and the full width at half maximum (fwhm) are listed. Deronde
et al. (2006) gives a detailed overview of the flight campaign and
image acquisition, and Ibrahim and Monbaliu (2009) gives details
regarding all the spectral bands and settings of the image.

2.3. Field data

Field sampling at 24 sites of the Molenplaat was carried out at
low tide, on the day of the overflight. The coordinates of these sites
were determined by means of a differential geographical posi-
tioning system (DGPS). To account for the variability within one
pixel, two or three replicates were sampled at each site.

Surface sediment was scraped, collected, and analyzed for
moisture content (MC), organic matter content (OM), and grain size
distribution. For chlorophyll a determination, the upper 2 mm of
sediment was frozen using a contact corer, which freezes all
photosynthetically active cells as well as the bulk of sediment
chlorophyll (Ford and Honeywill, 2002). The analysis of all these
samples was carried out by the methods described by Deronde
et al. (2006).

3. Methodology

3.1. The hyperspectral cube

A hyperspectral image is generally a “cube” of data, whereby
two axes refer to location, and a third axis refers to spectral
dimensionality. In this paper, spatial location was not taken into
account, whereby a pixel was only described by its reflectance value
per spectral band, without including the effect of neighboring
pixels. Therefore, an image can be seen as a set of N pixels. Each
pixel is represented by an n-dimensional vector xk, referred to as
a feature vector, where k˛½1;N�, and n is the number of features
(bands). This feature vector contains the values of a pixel’s reflec-
tance spectrum. The combination of these N feature vectors is the
N� n image X.

3.2. The spectral aspect

Spectral resampling is a form of convolution that allows to form
an image as seen by a particular sensor from an image with higher
spectral resolution. A sensor follows a certain spectral response
plaat and its surroundings.



Table 1
Characteristics of HyMap� image acquired on the 8th of June 2004, excluding noisy
bands.

Module Spectral range
[nm]

Band width
[nm]

Fwhm
[nm]

Number of bands
[-]

VIS 450e890 15e16 15 30
NIR 890e1350 15e16 15 32
SWIR1 1400e1800 15e16 13 32
SWIR2 1950e2480 18e20 17 32
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function that is characterized by the central wavelengths and the
fwhm of each spectral band. This function is used to alter the
spectral resolution of a certain data set to that of the considered
sensor. When this function is not known for a sensor, an assump-
tion of normality of spectral response is considered, and an
approximation using Gaussian functions can be done (Schläpfer
et al., 1999).

The hyperspectral image considered in this study and its
accompanying field data have been proven to be suitable for sedi-
ment characterization of the Molenplaat (Adam et al., 2006;
Deronde et al., 2006). A spectral resampling of this HyMap�
image was carried out to the spectral resolution of the considered
multispectral sensors (Table 2). The spectral response functions of
each of these sensors were known (ENVI, 2009). The response
function of HyMap�was not available and therefore approximated
using Gaussian functions, knowing the mean and the full width at
half maximum of each band.
3.3. The spatial aspect

Besides the spectral resolution of a sensor, the spatial resolution
is a fundamental aspect that affects the ability to characterize
specific entities in an image. It is defined by the combination of the
height and the instantaneous field of view of the acquiring sensor
(Atkinson and Curran, 1995; Lillesand and Kiefer, 2000). The spatial
resolution issue is investigated since each resolution of a different
type of imagery offers a distinctive perception and reveals different
processes (Sadowski and Sarno, 1976).

The traditional selection of a spatial resolution for a certain
application has been mostly based on experience, intuition, and
data availability. In general, researchers have the tendency to
choose imagery with the highest available or affordable resolution.
Table 2
Spectral and spatial properties of the four spaceborne multispectral sensors.

Sensor Number
of bands
[-]

Band range
[mm]

Pixel size
[m]

IKONOS 4 0.445e0.516 4
0.506e0.595 4
0.632e0.698 4
0.757e0.853 4

Landsat 5 TM 6 0.45e0.52 30
0.52e0.60 30
0.63e0.69 30
0.76e0.90 30
1.55e1.74 30
2.08e2.35 30

Landsat 7 ETMþ 6 0.45e0.515 30
0.525e0.605 30
0.63e0.69 30
0.75e0.90 30
1.55e1.75 30
2.09e2.35 30

Spot 5 HRG 4 0.50e0.59 10
0.61e0.68 10
0.78e0.89 10
1.58e1.75 20
This resolution can be too low, leading to a loss of required infor-
mation, or too high, leading to “too much” information, and
therefore, resulting in high cost, limited number of images, and low
efficiency in data interpretation.

Several researchers began to address this issuemore objectively,
whereby they investigated measures or criteria for the selection of
appropriate spatial resolutions. According to Woodcock and
Strahler (1987), this selection depends on three main factors: the
kind of information required, the methods used to extract the
information from the imagery, and the spatial structure of the scene
itself. Several approaches can be used to study spatial patterns in
imagery (Atkinson and Tate, 2000; Curran, 2001; Rahman et al.,
2003; Foody et al., 2004; Crawley, 2007).

Since the aimof this paper is limited to testing the applicability of
the fourmultispectral sensors, a simple approachwas usedwhereby
the original HyMap� was spatially resampled to the resolution of
these sensors. The spatial resampling procedure was based on the
“pixel aggregation” concept whereby the pixels that fall within the
coverage of the new resampled pixel were averaged. A weight was
used for each pixel based on its contribution to the new pixel. The
loss of information by using such lower spatial resolution was
assessed using unsupervised classification and field data.

3.4. Unsupervised classification

3.4.1. About unsupervised classification
Classification of imagery is a basic and centrally utilized image

processing tool for sediment characterization. Unsupervised clas-
sification groups the data into clusters whilemaximizing inter-class
variability and minimizing intra-class variability, without referring
to field knowledge (Lillesand and Kiefer, 2000). Yet, field knowl-
edge is important to understand what the identified clusters
represent. A successful unsupervised classification implies that the
data are clustered in a meaningful manner. When used for sedi-
ment characterization, the resulting clusters represent the main
spectrally distinguishable groups in the data. Since the spectra vary
with sediment properties, these groups can represent important
sediment types.

Unsupervised classification has been successfully used to char-
acterize certain inter-tidal sediment properties (Doerffer and
Murphy, 1989; Smith et al., 2004; Adam et al., 2006), even
though this type of classification is generally less popular than
supervised classification. However, unsupervised classification is
essential for inaccessible areas found on inter-tidal flats. It assists in
the planning of field campaigns and explains certain results of
supervised classification (Ibrahim et al., 2009).

The basic aim of a classification is for an unclassified feature
vector xk, belonging to a data set X, to be affiliated to one of several
specified groups. The first step is to find the probability of an
unclassified feature vector to belong to each group. These proba-
bilities are conditional and are referred to as a posteriori proba-
bilities (Theodoridis and Koutroumbas, 1999). Depending on the
classification approach, a classifier computes either the maximum
of these probabilities or the maximum of a defined function of
them. An unclassified feature vector is then assigned to belong to
the group corresponding to this maximum.

3.4.2. Unsupervised classification using mixture of Gaussians
approach

In this paper, the unsupervised scheme used was the mixture of
Gaussians approach and was performed by means of the Mixture
Modeling software (MIXMOD) by Biernacki et al. (2006). It is
a model-based approach, i.e. it is constituted of models suitable for
describing each cluster. It is a powerful approach for sediment
characterization (Ibrahim et al., 2009). It optimizes the fit between



Fig. 2. The four final clusters of the MG classification of the hyperspectral image and
their mean reflectance spectra.
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a cluster of data and a specified model, whereby clusters are
considered as various Gaussian distributions centered according to
their covariance structure (Bozdogan, 1993; Bozdogan, 1994a;
Beaven et al., 2000). Therefore, spectra xk, of n dimensions,
belonging to X, were assumed to arise from a probability distri-
bution of the following density (Biernacki et al., 2006):

f ðxk; qÞ ¼
XI

i¼1

Pi4ðxk; ni; coviÞ (1)

Pi are the mixing proportions where Pi � 0, and
PI

i¼1 Pi ¼ 1. Each
proportion denotes the prior probability that a data point is
generated by a mixture component i. vi and covi denote the mean
and the covariance matrix of the distribution. The vector parame-
ters to be estimated are denoted by q, i.e. q ¼ ðPi;.; PI ;
ni;.; nI ; covi;.; covIÞ.

4ðxk; ni; coviÞ is of an n-dimensional density Gaussian distribu-
tion representing density component i:

4ðxk;ni;coviÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞnjcovij

q exp
�
�1
2

�
xk� nTi cov

�1
i

�
ðxk� niÞ

�

(2)
Fig. 3. The distribution of the field datawithin the resulting clusters of the original hyperspec
To find the mixture components, the expectation-maximization
algorithm (EM) can be utilized (Dempster et al., 1977), where it
assigns the a posteriori probabilities to each component density of
the mixed Gaussian model with respect to each spectrum. Clusters
are assigned by selecting the component that maximizes the
a posteriori probabilities.

This Gaussian density model leads to (hyper) ellipsoidal classes,
whose geometric characteristics are based on the eigenvalue
decomposition of the covariancematrix. To be limited to this type of
ellipsoidal property of the classes leads to fitting the data in clusters
of equivalent features i.e. the shape, size, and orientation of the
classes. Depending on the parameterization of the covariance
matrix, models allow the fixing of cluster properties in various
combinations, resulting in different model types (Banfield and
Raftery, 1993; Biernacki et al., 2006). Bayesian Information Crite-
rion (BIC) is used to choose themost descriptive of thosemodels. It is
a commonly used criterion to compare models with different
parameterization and/or components since it effectively describes
the datawithout the use of toomanyparameters (FraleyandRaftery,
1998). Therefore, the model with the smallest BIC value was chosen
as the most suitable. The calculation was stopped using a threshold
of 10�4 for the relative change of the likelihood criterion.

The algorithm was initiated with the selection of random seed
pixels. Yet, due to its heuristic nature, it does not always attain
global optimum solutions, but rather local optima. As a result, the
classification was carried out several times (between 10 and 100,
depending on the size of the data). The classification with the most
suitable initiation was chosen based on the best classification
represented by the lowest BIC values.

When carrying out unsupervised classification of the HyMap�
image of the Molenplaat, its high dimensionality caused calculation
and efficiency drawbacks. Based on the work by Ibrahim et al.
(2009) and the high correlation between the contiguous bands of
the hyperspectral image, one out of five consecutive features were
selected, leading to 24 spectrally representative bands of the
considered parts of the electromagnetic spectrum.

3.4.3. Number of clusters
One of the basic steps of cluster analysis is to specify the number

of clusters that the data is to be grouped into. The number of
tral image - the mean, and 10th and 90th interquartile range of the field data are shown.



Fig. 4. The classification accuracy of field data with respect to ranges (5 mg/m2 for chl a content, 3% for MC, 0.5% for OM, and 5% of MUC) of a property’s content as derived from the
original hyperspectral image.
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clusters can be considered to vary between 1 and the smallest
integer larger thanN0.3, whereN is the number of pixels in an image
(Bozdogan, 1994b; Biernacki et al., 2006; Kostov and McErlean,
2006). This is a rule of thumb that tries to ensure that the
number of required parameters of the mixture models do not
exceed the number of pixels. The normalized entropy criterion
(NEC) (Biernacki et al., 2006) can be used to choose the most
suitable number of sediment type clusters in an image (Ibrahim
et al., 2009). NEC measures how well-separated the resulting
clusters are with respect to different number of clusters, where the
minimum values of NEC would indicate an appropriate division
(Celeux and Soromenho, 1996).

Although NEC is a powerful criterion for finding the number of
clusters in a data set, it could happen to be too parsimonious.
Therefore, the number of clusters recommended by NEC was
treated further. Each cluster was then divided individually by
means of MG into a new specific number of clusters based on NEC.
This resulted in a divisive, top-down hierarchical approach.
Therefore, after the first clusters were identified, they were split
recursively as one moves down the hierarchy. The two-step
Fig. 5. The classification accuracy of field data with respect to ranges (5 mg/m2 for chl a cont
Landsat TM and ETMþ settings.
procedure was repeated until a decision was made to stop the
splitting.

3.4.4. Clustering assessment
The Jeffries-Matusita (JM) separability measure and the

percentage of correct clustering of field data were used. JM mainly
calculates a mean distance for each cluster to all other clusters by
averaging the distance between a specific cluster and the rest of the
clusters (Klein et al., 2005). This is computed in a pairwise manner,
values range from 0 to 2.0, and indicate how well the clusters are
statistically separate. Values greater than 1.80 indicate that a cluster
pair has a good separability.

After clustering the original hyperspectral image, the
geographical location of each sampling site was affiliated to
a resulting cluster. When a sampling site was located at the border
between two or more clusters, it was excluded from the data set as
it would not be representative of any cluster. The field samples
(replicates at each sampling site) were then grouped according to
their clusters of affiliation and were addressed regarding each
sediment property. The distribution of each group of samples was
ent, 3% for MC, 0.5% for OM, and 5% of MUC) of a property’s content as derived from the



Fig. 6. The classification accuracy of field data with respect to ranges (5 mg/m2 for chl a content, 3% for MC, 0.5% for OM, and 5% of MUC) of a property’s content as derived from
IKONOS settings.

Fig. 7. The four final clusters of the MG classification of the hyperspectral image
spatially resampled to Spot 5 HRG imagery, i.e. 10 m � 10 m.
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checked per property. Based on these distributions, spectrally
significant thresholds could be chosen per property, representing
the spectral distinction of each group. All the field samples were
then divided between these groups per property and were
analyzed for their classification accuracy.

4. Results and discussion

4.1. Classification of the original image

The hyperspectral image resulted in 10 clusters using the NEC
hierarchical approach with JM values ranging from 1.85 to 2.0. The
decision to stop the hierarchical clustering and retrieve the final
number of clusters depended on the amount of splitting needed to
obtain various regions of interest of the Molenplaat.

Yet, since the concern of this analysis was to identify variations
in mainly four sediment properties, it was essential to investigate
how the sensors handled cluster separability with respect to those
properties. The field data obtained from the Molenplaat covered
only limited parts of the area, and therefore, they were included in
a few clusters and in small numbers. In order to realize which
properties were the most distinguishable, using each multispectral
setting, the clusters with the lowest JM separability were merged
until four clusters remained for the image. The decision to stop at
four clusters was based on the need to have each cluster cover
a “good” number of sampling sites while preserving the distinction
between different spectral patterns on the Molenplaat.

Fig. 2 shows the four final clusters of the hyperspectral image.
These clusters were of very high separability (JM > 1.99). The field
samples were found to be mainly distributed among three clusters
labeled as: a, b, and c. The boundary cluster did not contain any field
samples, yet, it showed very high separability with respect to the
remaining clusters. Its presence does not affect the analysis but
shows the most spectrally distinct clusters of the Molenplaat, and
therefore, it is retained throughout the study.

Fig. 3 shows the distribution of field data within clusters using
the mean property value for each cluster and the 10th and 90th
percentile range of the data. Based on the distribution of the field
data within the clusters, the following class-thresholds for each
property were selected. Chl a content is “low” when lower than
20 mg/m2 and “high” otherwise; moisture content is “low” when
lower than 20% and high otherwise; organic matter content is “low”

when lower than 2% and “high” otherwise; and finally a cluster was
labeled as “sandy” sediment when mud content was lower than
20% and “muddy” sediment otherwise. It should be noted that the
field samples that fell at the border of clusters were disregarded in
the generation of Fig. 3, leading to 5 samples for cluster “a”, 15
samples for cluster “b”, and 24 samples for cluster “c”.

Therefore, the three resulting clusters a, b, and c were respec-
tively labeled as “low chl a, low MC, low OM, and sandy sediment”,
“low chl a, highMC, low OM, sandy sediment”, and ”high chl a, high
MC, high OM, and muddy sediment”.

In order to assess the accuracy of this classification with respect
to the four sediment properties, the field data were divided into
ranges of 5 mg/m2 for chl a content, 3% for moisture content, 0.5%
for organic matter content, and 5% of mud content. For each range,
the percentage of correct classification of the included field samples
was calculated. The results were a form of “S” curves, whereby
a high classification accuracy would be found for the highest and
lowest ranges of a sediment property. The values in between, and
especially around the threshold used to form the two classes of
a sediment property, were the more challenging areas to classify.

Fig. 4 shows the classification accuracy of the field data
regarding each sediment property, within the specific ranges of the



Fig. 8. The classification accuracy of field data with respect to ranges (5 mg/m2 for chl a content, 3% for MC, 0.5% for OM, and 5% of MUC) of a property’s content as derived from of
the hyperspectral image spatially resampled to Spot 5 HRG imagery, i.e. 10 m � 10 m.
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property’s content. Regarding chl a and moisture content, the field
data were mostly classified correctly, based on a 20% threshold
between low and high contents of both properties. The lowest
accuracy was for “low chl a” data as the content got closer to 20%.
The field data in general were classified with lower accuracies
when considering organic matter content and mud content.
Fig. 9. The four final clusters of the MG classification of the hyperspectral image
spatially resampled to Landsat imagery, i.e. 30 m � 30 m.
4.2. Classification of the spectrally resampled images

The original image was resampled to the spectral properties of
the four multispectral sensors. Then, these images were clustered
by means of Mixture of Gaussians hierarchical approach. They
resulted in several clusters that ranged between 8 and 12 clusters.
The decision to stop the clustering depended on the amount of
splitting needed to obtain various regions of interest of the
Molenplaat. Although all the multispectral sensors were able to
distinguish the major clusters of the hyperspectral image, the
separability between these clusters differed between sensors: JM
values ranging from1.48 to 2.0 for Spot 5HRG,1.41 to 2.0 for Landsat
5 TM, 1.5 to 2.0 for Landsat 7 ETMþ, and 1.1 to 2.0 for IKONOS.

Similarly to the approach used for the original hyperspectral
image, the resulting clusters were merged into four. The four
clusters for the Spot 5 HRG resampling had an acceptable separa-
bility (JM > 1.78). Yet, the resulting patterns did not reveal infor-
mation regarding the properties of interest. Based on the available
knowledge of the area, it was not possible to label these resulting
clusters, whereby further investigation is required to clarify their
spectral significance. Aspects such as elevation and inclination of
the Molenplaat and specific organic and inorganic matter in the
sediment should be considered to investigate the distinction of
these clusters by Spot 5 HRG. This cannot be addressed in the scope
of this paper and this data set.

The spectral resampling to Landsat 5 TM and Landsat 7 ETMþ
both resulted in four very similar clusters of high separability
(JM> 1.85). These clusters showed a distinction between variations
in the considered properties with classification accuracy similar to
that of the original image (Fig. 5).

When the IKONOS spectral bands were used, the four resulting
clusters generally had a lower pairwise separability (JM > 1.54).
There was a decrease in classification accuracy of the properties
compared to the original image (Fig. 6). There was a decrease in
classification accuracy of chl a and organic matter content and
a dramatic decrease regarding moisture content compared to using
the hyperspectral data. This is due to IKONOS not covering a spectral
band in the SWIR part of the spectrum, which is highly sensitive to
moisture content. However, this classificationwas able to extract the
saturated border zone which has an overall low spectral response.

4.3. Classification of the spatially resampled images

The original hyperspectral image was spatially resampled to the
pixel size of the different sensors. Since the pixel size of IKONOS
image is 4 m� 4 m, it is considered to have the same spatial reso-
lution as the hyperspectral image. Fig. 7 and Fig. 9 show the
resulting four clusters of the spatially resampled data using the
hierarchical mixture of Gaussians scheme.

Unsupervised classification and its assessment were also used as
a tool to evaluate the loss of spatial structures corresponding to
different sediment properties when the hyperspectral image was
resampled to the pixel size of Spot 5 HRG. The 10 m � 10 m
hyperspectral image resulted in a good distinction between four
different clusters (JM > 1.990). On the other hand, there was no
clear distinction between field data with respect to all sediment
properties except for chl a (Fig. 8). This shows that a higher loss of



Fig. 10. The classification accuracy of field data with respect to ranges (5 mg/m2 for chl a content, 3% for MC, 0.5% for OM, and 5% of MUC) of a property’s content as derived from of
the hyperspectral image spatially resampled to Landsat imagery, i.e. 30 m � 30 m.

Table 3
The performance of the multispectral data for sediment characterization on the
Molenplaat compared to that of a hyperspectral image of 4 m � 4 m pixel size and
116 spectral bands: “þ” indicates a comparable result and “�” indicates otherwise.

Sensor Spectral applicability Spatial applicability

MC chl a MUC OM MC chl a MUC OM

Spot 5 HRG e e e e e þ e e

Landsat5 TM þ þ þ þ e þ e e

Landsat7 ETMþ þ þ þ þ e þ e e

IKONOS e e þ þ þ þ þ þ
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spatial structure in the patterns of moisture content, organic matter
content, and mud content occurred. Although the accuracy of chl
a content decreased, the distinction between “high chl a” and “low
chl a” areas was still possible. Therefore, compared to a 4 m� 4 m
pixel size, the use of 10 m � 10 m mainly retains structures of chl
a content.

Both Landsat settings are of the similar pixel size (30 m� 30 m).
When resampled to the spatial settings of the Landsat sensors, the
hyperspectral image resulted in a good distinction between four
different clusters (JM> 1.999). On the other hand, a clear loss of
detail is noticed, and most of the pixels in the image were grouped
in one cluster. This is shown in Fig. 9 for both Landsat settings since
they are of the same spatial resolution. Classification accuracy was
much higher for high contents of each property due to the reason
that most of the samples were extracted from areas of high mois-
ture, organic matter, mud and chl a contents, and the cluster rep-
resenting them is a dominant cluster. Therefore, it is more
important to check the classification accuracy of the low content
values of the different properties (Fig. 10). Using that approach, the
only sediment property that seemed to be slightly retained was chl
a content, whereby the clusters were only be labeled according to
this sediment property (Fig. 9).

5. Conclusions

Sediment characterization by remote sensing should include
efforts to utilize different sources of imagery for cost efficiency and
temporal coverage. For this to occur in a reasonable manner, the
choice of the different imagery has to be based on the their suit-
ability for sediment characterization. In this paper, the suitability of
multispectral sensors Spot 5 HRG, Landsat 5 TM, Landsat 7 ETMþ,
and IKONOS was assessed regarding sediment characterization of
the Molenplaat. This investigation was carried out in comparison
to a hyperspectral image consisting of 116 spectral bands and
a 4 m� 4 m spatial resolution using unsupervised classification.

The hyperspectral image was spatially and spectrally resampled
to the properties of themultispectral sensors. The field data covered
only limited locations on theMolenplaat, whereby the properties of
interest were moisture content, chlorophyll a content, organic
matter content, and mud content. The resampled imagery were
classified in an unsupervised manner and assessed for the charac-
terization of these sediment properties. Table 3 shows the results of
the different sensors compared to those of the hyperspectral image.

Landsat 7 ETMþ spectral settings showed the best results when
compared to the hyperspectral image with a high JM separability
between pairwise clusters. Furthermore, these settings led to a high
quality distinction between variations in the considered sediment
properties. Landsat 5 TMresulted in a lower JMseparability between
the clusters than that of Landsat 7 ETMþ. Yet, it also resulted in high
quality distinction between variations in the considered sediment
properties. IKONOS led to a somehow “noisy” effect on the data. The
clusters obtainedwerenotof a high separability and showed a lower
capability in detecting variations in most sediment properties,
especially for moisture content. Finally, Spot 5 HRG generally
resulted in a reasonable clustering, with an acceptable separability,
yet the four most separable clusters were not connected to the
variation in the four sediment types of interest.

Regarding the spatial aspect, IKONOS can obtain the same
attributes as the hyperspectral image since it is of the same spatial
resolution. On the other hand, mainly chl a patterns surfaced using
the pixel sizes of the remaining sensors.

It is essential to keep in mind that this study was carried out
starting from a 4 m by 4 m pixel size. There can be very important
variations occurring on more detailed scales, especially when it
comes to patterns in chl a content that can vary in patches that
range from cm to m in size. Such scales were not addressed in this
study due to constraints in the image resolution.

The presence of more field data that are well spread on the area
can allow the utilization of more clusters and reveal in a better way
the weaknesses and strength of the considered sensors. Yet, the
current results already give guidelines regarding the usefulness of
these sensors for the desired task.

Finally, these results give an indication regarding four space-
borne multispectral sensors to be used for sediment characteriza-
tion of the Molenplaat. Yet, it might be necessary to apply different
methods to different data types, especially for sensors that were
revealed not to be suitable for this characterization.
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