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VIII.- Numerical methods 

The equation vhich governs the evolution of a passive pollutant (e.g. 

a dye tracer) in a shallow sea has been established by Nihoxil (1971). 

In ajces moving with the center of the patch, this equation may be 

written, neglecting eddy diffusivity as compared to shear effect diffusivity 

(1) |£ = ̂ vC^U(U.Vr)] . 

Three groups of methods (double d i sc re t i za t ion , simple d i sc re t i za t ion , 

pseudo-analytical) have been t e s t ed on th i s equations in the case of Talbot 's 

experiment of dye release at point B . 

As boundary condition, i t i s assumed that r = 0 for a l l time outside 

some large domain Ci {ü must be large enoiigh to contain the patch of pol lu

tant for a l l time of i n t e r e s t ) . As i n i t i a l condition, i t i s assumed tha t the 

t racer i s spread i n i t i a l l y over some small domain ÇI' {Q' « Q). 

In view of the ra ther crude approximation made by using currents and 

depth data given by current a t l as and bathygraphic maps, i t i s sa t i s fac tory 

to consider the velocity vector U as a function of time only and H a 

constant over the region of i n t e r e s t . This approximation saves core memory 

storage in the computer and t h i s i s an advantage in the preliminary work of 

perfecting the method. 

Eq. ( l ) can now be writ ten in cartesian coordinates 

3r oH , 2 8^r . „ 8^r . 2 3^rv 
(2) 9^ = T ^^1 7 2 ^ 2 u^u^ - g - ^ + U2 — ) 

where u^ and Ug are the components of the velocity vector U 

1.- Double discre t iza t ion method 

1 .1 . - Time discre t iza t ion 

The operator -TT i s approximated by a time-forward f in i t e difference 
at 

expression 

(3) I t ~ i t ^'^^^ ' **̂ *̂  " ^('^'*)^ * °̂ *̂̂  • 
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2 
With symmetric differences, the truncation error would have been 0(At ) . 

However the niomerical s t a b i l i t y analysis shows that in t h i s case the di f fe

rence scheme i s always xmstable. This i s the consequence of the fact that 

time appears in a non-symmetric way in equation (2) . At must be chosen in 

order t o minimize the truncation er ror without increasing unreasonably the 

computation time. In most of our applications 

At ~ 600 s . 

1.2.- Sgaçe_disçretization 

We superpose a net -gr id R^ upon the (x^.x^) plane. This ne t -gr id 

i s square-shaped and the mesh-size i s i = Ax̂  = àx^ ; ^£ i s the subset 

of R^ representing the inner points of Q . 

The space derivatives are then approximated by the f in i t e differences 

2 

9x2 ^ 

3^ 
i.J = ~ ï ï (^ i . i , j . i -̂  ^ i - i , j - i - ^ i . i , j - i - ^ i-i,i^i ) ^ °(^^) 3x^9x2 - - ^ ^ 

First, an explicit scheme was tried. In this case, all values r„ „ 

in (k) are taken at time t . This scheme however did not conserve mass and 

negative concentrations were found. Gorenflo (1970) has shown that, under 

certain conditions, which are sometimes fulfilled in our problems, there 

exist no explicit method giving non negative results everywhere and preser

ving conservation of mass. 

For this reason, an attempt was made to use an implicit scheme. In this 

case, values of r^ at t + At also occur in (U), Hence simultaneous cou

pled linear equations (~ UOO) must be solved to compute the concentrations 

at time t + At . 

The scheme had however to be abandonned because of non conservation ' 

[1) Note that eq. (2) is actually parabolic in space (due to the neglecting of eddy diffu-

sivity). Gauss-Seidel method is suitable for elliptic spatial operators describing phe-

nomenons such that each point influences all its neighbours. Now, in parabolic case, 
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and prohibiti" 'e coinputation time. 

As the solution of the diffusion equation in the one-dimensional case 

i s the sum of error functions, i t would seen that a gr id with meshes enlar 

ging from the origin t o the boundary i s pa r t i cu la r ly adapted t o diffusion 

problems. 

I f we choose £^-steps following 

£i = «, 

6 £ 
£i = i,_,{^ + 

we get a net shown in figure 12, 

i-1' 
L = I Z, 
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fig. 12. 

Finite difference expres

sions established by Sundquist 

and Veroins (I9é9) for one-

dimensional problems make it 

possible to approximate the 

spatial operator with a trun-

cation error of 0(£. ) , and 

to reduce in a significant 

way the number of net-points 

for the same precision as 

constant-step net-grids. 

But in the two-dimensional 

case, this reduction of me

mory storage is counterbeilan-

ced by an increasing computation time due to sophisticated formxilas. 

On the other hand, this scheme is not conservative, because there is 

no symmetry, neither in x^ , nor in Xg , in the expressions of the coeffi

cients. 

2.- Simple discretization method (Galerkin method) 

The method consists in a conventional time discretization and a decom

position of r(x^,X2,t) into series of orthonoimed functions ç.(X|̂ ) , i.e. 

each point influences its neighbours only in a definite direction (U direction), there

fore the Gauss-Seidel method is ill-adapted (no conservation, lateral diffusion). 
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funct ions such t h a t : 

(6) I Çi (x , ) Ç j ( x J dXk = s,. . 

We write r(x^,X2,t) in the following discrete form : 

N 

(T) r(x^,X2,t) = E a..(t) ^^(x^) Z^U^) , 
i,j = 1 -' 

N being the maximum number of approximation functions for each independent 

variable. 

(8) 

N 
(9) Lr = E a^.Ct) Uç^Cx^) Ç-Cxp)] 

where L i s t h e s p a t i a l o p e r a t o r . 

Using t h e o r thogona l i t y p r o p e r t y ( 6 ) , we get a l i n e a r system of N x N 

d i f f e r e n t i a l equat ions of f i r s t o rder which can be solved by a c l a s s i c a l 

Runge-Kutta o r p r e d i c t o r - c o r r e c t o r method, of which we l l - adap ted ve r s ions 

e x i s t s . 

We have t e s t e d t h i s method wi th two very d i f f e r e n t s e t s of b a s i s 

func t ions . 

1 s t _ s e t 

(10) Çn(Xk) = cos ( n K x J n = 1,2,3 ; k = 1,2 

K i s choosen such t h a t cos (K X 10 km) = 0 t o s a t i s f y boundary 

condi t ions on r . Or thogonal i ty of t r i g o n o m e t r i c funct ions i s well-known. 

2nà s e t 
X 

(11) ç,(Xk) = c , exp ( - Y") H,(Xk) n = 1 , . . . , 6 ; k = 1,2 

where Ĥ (x,̂ ) is the Hermite polynomial of order n , with the orthogonality 

relation 

(12) J ĉ Cj exp (- x^) Hi(Xk) Hj(x,) dx̂ ^ = 6. . . 
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o 

The length scale for x^ and Xg is choosen so that exp (- x,̂ ) 

practically vanishes outside a circle with a diameter of 2 km . 

In both cases, properties of approximation functions are such that, 

while integrating, terms corresponding to 

9x^9x2 

vanish and then do not in f luence e v o l u t i o n . Thus, t h i s r e p r e s e n t a t i o n i s 

not p e r f e c t l y c o n s i s t e n t . 

The Galerkin method d iverges in both cases a f t e r computations c o r r e s 

ponding t o a couple hours in a c t u a l t i m e . 

In t h e f i r s t c a s e , i t can be admit ted t h a t t h e t o t a l number of b a s i s 

f imct ions i s i n s u f f i c i e n t t o r e p r e s e n t t h e i n i t i a l concen t ra t ion d i s t r i b u t i o n , 

which i s very sharp . Moreover, on t h e boundary T , t h e concen t ra t ion may 

a c t u a l l y v a n i s h , but not i t s s p a t i a l d e r i v a t i v e s , and t h i s fac t i s p h y s i 

c a l l y not t r u e . 

In t h e second c a s e , t h e i n i t i a l d i s t r i b u t i o n i s w e l l - r e p r e s e n t e d by 

the ç^(x,^) , t he s p a t i a l d e r i v a t i v e s of which vanish a t boiindary. 

But because the ç^ ' s do not vary with t i m e , i t i s impossible t o 

approximate , wi th any accuracy , t h e smoothing of t h e function r { x . , X 2 , t ) 

in t i m e . 

We have had in mind t o change t h e l e n g t h - s c a l e a t each t ime s t e p , t o 

t ake smoothing i n t o account , but t h i s t echnique l eads t o very s o p h i s t i c a t e d 

problems of connexion between consecut ive s o l u t i o n s and i s of no p r a c t i c a l 

i n t e r e s t . 

3 . - A n a l y t i c a l methods 

3 . 1 . - Pseudo^anal^t ical_method 

I f we choose the t i m e - s t e p At small enough, we may admit t h a t U(t) 

i s c o n s t a n t . We choose t h e x -ax i s in t h e U - d i r e c t i o n . So eq . (2) becomes 

one-d imens iona l , with cons tan t c o e f f i c i e n t s . 

(13) l r= °"H D= aHu . 
9x 
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If we assume that the initial concentration is r„ within a range 

{-d,+d) , the analytical solution is (Crank) : 

(lî ) 

drawn in figure 13-

r ( x , t ) = I r , [er f ( ^ - ^ ) + erf (^ - i : ^ ) ] 
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fig. 13.- Concentration-distance curves for an extended source of limited 

extent. Numbers on curves are values of (Dt/£ )' . 

With t h e former assumptions we can use t h i s s o l u t i o n l o c a l l y , a t each 

po in t of a n e t - g r i d (x^^jXg) i f we cons ider a t each i n s t a n t , t he concen t r a 

t i o n r ( x ^ , X 2 , t ) as an i n i t i a l concen t ra t ion t o compute r{x^. ,X2. , t+At) . 

The problem i s now t o determine for each po in t (x^,X2) , t he p o i n t s (x- i . ,X2.) 

of t h e n e t , which are s u f f i c i e n t l y nea r t o (x^,X2) in t h e U - d i r e c t i o n , t o 

be in f luenced by r (x . j ,X2, t ) . 

The number of t he se p o i n t s i s determined by (——) [see f igure 1 3 ] . 
I 

Figure li+ shows the choice of t h e s e p o i n t s depending upon t h e d i r e c t i o n of 

v e c t o r U in t h e case where u^U2 > 0 
U2 

and — > 1 

1 5 
u 3 ' 
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I t i s easy to see that a l l s i tuat ions are analogous to one of the 

formers. 

3 .2 . - Loçal_analytical_solution 

I f 

(15) 9t ^ ' at ' 

it can easily be shown that equation (2) has a solution 

2 1 
(16) -i 

r = Ty t exp 
U (ill + i^2)-

l6 oHt u^ Ug 
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u^ and Ug being neither constant nor uniform, we co\ild tiy to write the 

solution r(x^,X2,t) in the form 

(IT) r = r K(x^,X2,t) 

or 

(18) r = ? + K(x^,X2,t) 

where K is a continuous and continuously differentiable function of t , 

x^ , X2 , which satisfies a partial differential equation with given boun

dary conditions 

(19) -~ = N(K,x^,X2,t) . 

In t h i s way, we get r id of the part of the solution tha t i s the most 

d i f f i cu l t t o t r e a t by numerical methods (because of i t s exponential form), 

and we may admit that (19) has a smoother solution than (2 ) , more accessible 

numerically. 

This method i s now being invest igated. 

3.3•~ Isoconcentration_çurves_drawing 

We have worked out a routine to draw isoconcentration curves. This 

routine needs, as input data, the values of the concentration at a l l the 

points of a ne t -gr id with constant s tep . 

By means of these data (and interpolat ion) the routine : 

1) computes a l l the points belonging to the segments of the ne t , where the 

concentration i s equal to a given value (for ins tance, one tenth of the 

maximimi concentration) ; 

2) s tores the coordinates of these points ( i n i t i a l point i s the origin) ; 

3) c l a s s i f i e s and brings together a l l the po in t s , mesh af ter mesh, taking 

in to account that the concentration inside a curve i s always greater than 

the given value on the curve (the curves are assumed t o have a general 

convex shape) ; 

k) draws a smooth curve joining a l l the po in t s . 

The program allows to draw several curves for one ne t , with different 

graphical representation (see f ig . 6-8, pp. U2-ltU). 
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4.- Results of the tests 

A.I.- Ex£liçit_scheme 

- conservative method 

- existence of negative concentration {7 . 10 of the t o t a l mass) 

- the Gorenflo corrections are l i t t l e effect ive 

- very rapid computation 

- resul t ing curves can be compared to Talbot ' s experiments for a ~ 0.5 

A.2.- Î52liçit_scheme 

- non conservative scheme 

- l a t e r a l diffusion (physically inexis ten t ) 

- existence of small negative values 

- l i t t l e effective corrections 

- computation time rather large 

A.3.~ Y§ri5'5iS_Ë!ËËEË 

- non conservative scheme 

- ra ther large negative concentrations 

- ra ther rapid computation 

B.- G§lerkin_methoà 

- rapid divergence in both t e s t s 

C.- Pseud03anal;^tical_method 

- no negative concentrations 

- l a t e r a l diffusion 

- very rapid computation 

- seems to be d i f f icu l t t o use for non-uniform U and H 

5.- Conclusion 

At the present t ime, the best methods are the simplest ones. Most of 

the well-known discrete methods for spa t i a l e l l i p t i c operator fai led t o solve 

our problems. I t seems tha t the pseudo-analytical methods a r e , at present 
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and for very simplified problems, the most ef fec t ive . Let us note f ina l ly 

that a research engineer of EAI Inc. i s now working to solve oiir problem by 

means of hybrid (analog-digital) computers, but unfortunately, he has no 

resu l t s ye t . We emphasize more the lack of accurate experimental data. 
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