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VIII.- Numerical methods

The equation which governs the evolution of a passive pollutant (e.g.
a dye tracer) in a shallow sea has been established by Nihoul (1971).
In axes moving with the center of the patch, this equation may be

written, neglecting eddy diffusivity as compared to shear effect diffusivity

2
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Three groups of methods (double discretization, simple discretization,
pseudo-analytical) have been tested on this equations in the case of Talbot's
experiment of dye release at point B .

As boundary condition, it is assumed that r = 0 for all time outside
some large domain £ (Q must be large enough to contain the patch of pollu-
tent for all time of interest). As initial condition, it is assumed that the
tracer is spread initially over some small domain ' (Q' « Q).

In view of the rather crude approximation made by using currents and
depth data given by current atlas and bathygraphic maps, it is satisfactory
to consider the velocity vector U as a function of time only and H a
constant over the region of interest. This approximation saves core memory
storage in the computer and this is an advantage in the preliminary work of
perfecting the method.

Eq. (1) can now be written in cartesian coordinates
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where u,; and u, are the components of the velocity vector U .

1.~ Double discretization method

1.1.- Time discretization

The operator %{ is approximated by a time-forward finite difference

expression

(3) —aa-f ~ -Al{ [r(x, t+at) - r(x,t)] + o(at) .
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With symmetric differences, the truncation error would have been 0(At2) .
However the numerical stability analysis shows that in this case the diffe-
rence scheme is always unstable. This is the consequence of the fact that
time appears in a non-symmetric way in equation (2). At must be chosen in
order to minimize the truncation error without increasing unreasonably the

computation time. In most of our applications

At ~ 600 s .

1.2.- Space_discretization

We superpose a net-grid Ry wupon the (x1,x2) plane. This net-grid
is square-shaped and the mesh-size is & = Ax, = bx, 3 R is the subset
of R, representing the inner points of Q .

The space derivatives are then approximated by the finite differences
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First, an explicit scheme was tried. In this case, all values r

in (L4) are taken at time t . This scheme however did not conserve mass and
negative concentrations were found. Gorenflo (1970) has shown that, under
certain conditions, which are sometimes fulfilled in our problems, there
exist no explicit method giving non negative results everywhere and preser-
ving conservation of mass.

For this reason, an attempt was made to use an implicit scheme. In this
case, values of r at t + At also occur in (4). Hence simultaneous cou-
pled linear equations (~ 400) must be solved to compute the concentrations
at time t + At .

The scheme had however to be abandonned because of non conservation(1)

(1) Note that eq. (2) is actually parabolic in space (due to the neglecting of eddy diffu-
sivity). Gauss-Seidel method is suitable for elliptic spatial operators describing phe-
nomenons such that each point influences all its neighbours. Now, in parabolic case,

A



and prohibiti—e computation time.

As the solution of the diffusion equation in the one-dimensional case
is the sum of errcr functions, it would seen that a grid with meshes enlar-
ging from the origin to the boundary is particularly adapted to diffusion
problems.

If we choose &;-steps following

2, =4
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gyo= 0, (1 ) L=EL&

we get a net shown in figure 12.

Finite difference expres-—

—“";; ~~~~~~~~ f sions established by Sundguist
and Veroins (1969) for one-

~_";;"“ L dimensional problems make it

2;”‘ possible to approximate the
B . spatial operator witg a trun-
B T cation error of 0(&°) , and

L, to reduce in a significant

A way the number of net-points
_________ for the same precision as

£, constant-step net-grids.
--------- But in the two-dimensional

fig. 12. case, this reduction of me-
mory storege is counterbalan=-
ced by an increasing computation time due to sophisticated formulas.
On the other hand, this scheme is not conservative, because there is
no symmetry, neither in x, , nor in x, , in the expressions of the coeffi-

cients.

2.~ Simple discretization method (Galerkin method)

The method consists in a conventional time discretization and a decom-

position of r(x,,x,,t) into series of orthonormed functions cj(xk) , 1.e.

each point influences its neighbours only in a definite direction (U direction), there-
fore the Gauss-Seidel method is ill-adapted (no conservation, lateral diffusion).
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functions such that :

(6) j;k £ ) Tyl dxy = 6y

We write r(x,,x,,t) in the following discrete form :

(1) rlxgxget) = T s8] £0e) £0e)
1,)=

N being the maximum number of approximation functions for each independent

variable.
. N .
(8) r= X FRILNIQRACHRICS
N
(9) Lr = T a;;(t) Llz;(x,) Cj(xz)]

i,j=1

where L 1s the spatial operator.

Using the orthogonality property (6), we get a linear system of N x N
differential equations of first order which can be solved by a classical
Runge-Kutta or predictor-corrector method, of which well-adapted versions
exists.

We have tested this method with two very different sets of basis
functions.

(10) z,.(x,) = cos (nkx,) n=1,2,3;k=1,2

k is choosen such that cos (k x 10 km) = 0 to satisfy boundary

conditions on T . Orthogonality of trigonometric functions is well-known.

2nd set

2
(11) tx) =, exp (- 25 H(x) n=1,...,6;k=1,2

where H _(x,) is the Hermite polynomial of order n , with the orthogonality

relation
+00
(12) j“ c;cj exp (- x%) H,(x,) Hj(xk) dx, = 8;, .

“—oc
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The length scale for x, and X, is choosen so that exp (- xf)
practically vanishes outside a circle with a diameter of 2 km .

In both cases, properties of approximation functions are such that,
while integrating, terms corresponding to

a2r
3x13x2
vanish and then do not influence evolution. Thus, this representation is
not perfectly consistent.

The Galerkin method diverges in both cases after computations corres-
ponding to a couple hours in actual time.

In the first case, it can be admitted that the total number of basis
functions is insufficient to represent the initial concentration distribution,
which is very sharp. Moreover, on the boundary T , the concentration may
actually vanish, but not its spatial derivatives, and this fact is physi-
cally not true.

In the second case, the initial distribution is well-represented by
the g (x,) , the spatial derivatives of which vanish at boundary.

But because the g,'s do not vary with time, it is impossible to
approximate, with any accuracy, the smoothing of the function r(x,,x,,t)
in time.

We have had in mind to change the length-scale at each time step, to
take smoothing into account, but this technique leads to very sophisticated
problems of connexion between consecutive solutions and is of no practical

interest.

3.- Analytical methods

3.1.- Pseudo-analytical method

If we choose the time-step At small enough, we may admit that u(t)
is constant. We choose the x-axis in the u-direction. So eq. (2) becomes
one-dimensional, with constant coefficients.

2

ar _ ar _
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If we assume that the initial concentration is r, within a range

0
(-d,+d) , the analytical solution is (Crank) :

(1k4) r(x,t) = %-ro [erf (d —%) + erf (Q_i_ﬁ)]
2 /Dt 2 /ot

drawn in figure 13.
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fig. 13.- Concentration-distance curves for an extended source of limited
extent. Numbers on curves are values of (Dt/£2)2 .,

With the former assumptions we can use this solution locally, at each
point of a net-grid (x,,x,) if we consider at each instant, the concentra-
tion r(x,,x,,t) as an initial concentration to compute r(x1i,x2i,t+At) .

The problem is now to determine for each point (x,,x,) , the points (x1i,x2i)
of the net, which are sufficiently near to (x,,x,) in the u-direction, to

be influenced by r(x,,x,,t) .

. . . D At,? .
The number of these points is determined by (———) [see figure 13].

9’2

Figure 14 shows the choice of these points depending upon the direction of

. u

vector U 1n the case where u,u, > 0 and -Ei > 1
1
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Discrete diffusion representation

(a) (b) (c) (d)

Velocity direction

fig. 14.

L Uy
-— -
b) 3 - u1 < 2 9
o
C) 2 < I;; <L s
u
a) 2> .
U
It is easy to see that all situations are analogous to one of the
formers.

3.2.- Local analytical solution

If
ou _ v _

it can easily be shown that equation (2) has a solution

(16) r=r, £ 2 exp [- 16UaHt u1 ) ]
1
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u, and u, being neither constant nor uniform, we could try to write the

solution r(x,,x,,t) in the form

(17) r
or

(18) r

T K(x4,%,,t)

¥+ K(x1,x2,t)

where K 1is a continuous and continuously differentiable function of t ,
X4 s X, , which satisfies a partial differential equation with given boun-
dary conditions

3K
(19) pral N(K,x,,X,,t) .

In this way, we get rid of the part of the solution that is the most
difficult to treat by numerical methods (because of its exponential form),
and we may admit that (19) has a smoother solution than (2), more accessible
numerically.

This method is now being investigated.

3.3.- Isoconcentration curves_drawing

We have worked out a routine to draw isoconcentration curves. This
routine needs, as input data, the values of the concentration at all the
points of a net-grid with constant step.

By means of these data (and interpolation) the routine
1) computes all the points belonging to the segments of the net, where the

concentration is equal to a given value (for instance, one tenth of the
maximum concentration) ;

2) stores the coordinates of these points (initial point is the origin) ;

3) classifies and brings together all the points, mesh after mesh, taking
into account that the concentration inside a curve is always greater than
the given value on the curve (the curves are assumed to have a general
convex shape) ;

4) draws a smooth curve joining all the points.

The program allows to draw several curves for one net, with different

graphical representation (see fig. 6-8, pp. L42-Lk).
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4.- Results of the tests

A.1.- Explicit scheme

- conservative method

"2 of the total mass)

- existence of negative concentration (7. 10
- the Gorenflo corrections are little effective
- very rapid computation

- resulting curves can be compared to Talbot's experiments for o ~ 0.5

A.2.- Implicit_scheme

- non conservative scheme

- lateral diffusion (physically inexistent)
- existence of small negative values

- little effective corrections

- computation time rather large

A.3.- Variable steps

- non conservative scheme
- rather large negative concentrations

- rather rapid computation

B.- Galerkin method

- rapid divergence in both tests

C.- Pseudo-analytical method

no negative concentrations

lateral diffusion

- very rapid computation

seems to be difficult to use for non-uniform U and H

5.- Conclusion

At the present time, the best methods are the simplest ones. Most of
the well-known discrete methods for spatial elliptic operator failed to solve

our problems. It seems that the pseudo—analytical methods are, at present
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and for very simplified problems, the most effective. Let us note finally
that a research engineer of EAI Inc. is now working to solve our problem by
means of hybrid (analog-digital) computers, but unfortunately, he has no

results yet. We emphasize more the lack of accurate experimental data.
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