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FOREWORD

The Netherlands governmental civil engineers organisation, called Rijkswater­
staat, has the pleasure of presenting this the first number of a new series which
describes the mathematical methods now in use to calculate the changes of tides and
tidal or non-tidal currents during and after the execution of works which will influence
them. The experience gained since 1920, when Prof. H. A. Lorentz started his weI!­
known mathematical prediction about the influence of the Zuiderzee dam upon the
tides and storm-surges, has steadily increased. His method has been used extensively
since then and various other mathematical methods have been added, so that there
are now a few of them which can check each other. From these the expert may choose
the method most suitable for the problem under review.

The Delta works (1953 till about 1980) require very precise tidal calculations based
on equally precise data obtained from the gauges. For this reason the basic data
obtained from the gauges should be quite accurate, especial1y in the southwestern part
of the Netherlands, where the new works have started, which wil\ close al1 the
estuaries except the Westerschelde and the Rotterdam Waterway. The first is too
wide to be able to be crossed by optic level1ing, hence the necessity of the hydraulic
levelling across this estuary, also described in this volume.

It is my sincere wish that the new series, to be issued at irregular intervals, may
render good service in the international field of civil engineering.

The Director-General,

A. G. Maris.
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SUMMARY

A survey is given of the established practice of tidal computations in the Netherlands.
The dynamical analysis of tidal elevations and currents in shallow waters is of great practical

interest when coastal engineering projects are undertaken, like the Zuiderzee or the Delta project,
both in the Netherlands.

Tidal computations have to be based upon a careful schematization of the region considered. The
water is assumed la move substantially in the length direction of a channel with variabie cross-section
or in a channel network. The problem is then governed by two partial differential equations, the
continuity equation and one dynamical equation.

These equations generally are too complicated to admit solutions in closed form. Several methods
of numerical approach have therefore been devised.

First among these methods are the harmonie methods, by which one or more tidal constituents are
computed. If confined to one single constituent (M2), this method is relatively simple to handle and
it requires a moderate effort of calculation. The computation of further constituents leads to pro­
gressively increasing efforts, so that the method is seldom extended beyond the second harmonie
(M4).

For the immediate numerical integration of the continuity and the dynamicaI equation, several
ways may be followed. A method based on an iterative process has been extensively used for practical
problems in the Netherlands and abroad. This method is particularly suited to analyse tidal motions
in connection with the problem of schematization.

A third group of methods is based upon the properties ofthe characteristicelements ofthe differential
equations. lntegration, performed either graphically or numerically, is in particular used in specific
propagation problems, such as wave motions produced by sluicing operations and bores.

The employment of large computers, either analogue or digital, is here mentioned only briefly,
since more detailed information on the development is being prepared.

SOMMAIRE

La pratique établie des calculations de marée en Pays Bas est résumée.
L'analyse dynamique des marées et des courants de marée en profondeur faible a beaucoup d'inté­

rêt pratique pour I'exécution des ouvrages dans les régions littorales, comme les projets du Zuiderzee
et du Delta dans les Pays Bas.

La calculation des marées doit partir d'une schématisation scrupuleuse de la région en considéra­
tion. II est supposé que Ie mouvement soit à peu près longitudinal dans un chenal à profil varié, ou
dans un réseaux de chenaux. Le problème se pose alors par deux équations aux dérivées partielles,
l'équation de continuité et une équation dynamique.

Ces équations sont généralement trop compliquées qu'ils admisent une solution en forme fermée.
C'est pour ça que diverses méthodes numériques ont été inventées.

Premièrement il faut mentionner les méthodes harmoniques par lesquelles on calcule une ou
plusieurs composantes sinusoidales. En se bornant à une seule composante (M2) on obtient une
méthode relativement simple et n'exigeant qu'un effort de calcul modéré. En calculant plus de

') Chief Mathematician, Watcr Management and Research Department, Netherlands Rijkswaterstaat.
") Chief Engineer, Water Management and Research Departmentan, Netherlands Rijkswaterstaat.
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TIDAL COMPUTATIONS IN SHALLOW WATER

composantes I'effort va en croissant progressivement, tel que la méthode est rarement étendue au
delà de la seconde composante (M4).

L'intégration numérique directe de l'équation de continuité et de l'équation dynamique se peut
faire par diverses méthodes. Une méthode basée sur une procédure itérative a été employée intensive­
ment pour des problèmes pratiques aux Pays Bas et d'ail1eurs. Cette méthode se prête surtout pour
I'analyse des mouvements de marée en connection avec la problème de la schématisation.

Les méthodes d'une troisième groupe se basent sur les éléments caractéristiques des équations
différentielles. L'intégration, soit graphiquement, soit numériquement, s'emploie surtout pour des
problèmes spéciaux de propagation, comme les mouvements ondulatoires produits par les opérations
de vannage et les mascarets.

L'emploi de grands calculateurs, soit analogues, soit digitales, est mentionné ici que brèvement,
parce qu'un rapport plus détaillé SUl" ce développement est en cours de préparation.

1. INTRODUCTION

1, I. Purposes of computation.
Hydraulic engineering in maritime waters is confronted with the tidal mot ion.

It depends on the extent of the structures to be planned, how deeply the engineer
will be interested in the tides.

When he is concerned with local structures of relatively small extent, so that there
will be no serious interference with the tidal motion as a whoie, it will be sufficient
to collect observational data on the tide as it exists. The influence of the structure
on the local pattern can then usually best be investigated by a model of the local
situation.

If however a substantial interference with the movement of the tides is contem­
plated, it will be necessary to investigate thoroughly the mechanism ofthe tidal motion,
in order to predict correctly how the intended interference will work out. For this
purpose the engineer can have recourse to computations and to research on a model
of the whole estuary.

Technical projects which may entail such a thorough investigation are e.g. :
I. Land reclamation in an estuary.
2. Safeguarding low countries along an estuary from flooding by storm surges.
3. Improvement of draining of low countries along an estuary.
4. Preventing or impeding the intrusion of salt water through an estuary.
5. Preventing the attack of a tidal current on a shore.
6. Improvement of a shipping channel in an estuary.
7. The construction of a shipping canal in open connection with the sea.
8. The utilization of the energy of the tides.

Usually a technical project will cover more than one of the above purposes.

The computations provide informations on water levels (of interest for height of
seawaIls, draining sluices, draught of ships), currents (shore protection, silting up or
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deepening of channeIs, navigation) and energy (power plant). They give indications
for the execution of works, in particular for closing programs of stream gaps. Some­
times computations may have influence on the general design of a project, like in the
case of the enclosure of the Zuiderzee [12], where the Iocation of the main dam was
altered according to insight gained by computations. None of the many works in the
Dutch tidal waters executed since, was undertaken without the support of tidal
computations.

1, 2. Nature of the problem.

Tidal hydraulics in shallow water deals with the mechanism of the tidal mot ion
in estuaries, inlets, tidal rivers, open canals, lagoons and other coastal waters. For
brevity we shall hereafter often speak of "estuaries", when we mean those shallow
coastal waters in genera!.

The astronomical tides are generated substantially in the vast oceans and thence
penetrate directly or through border seas into the coastal waters just mentioned.
The tidal motion in this final stage may be characterized by the following properties :

1. On the whole the tides belong to the kind of wave phenomena called "long
waves", i.e. waves in which the vertical velocities and accelerations are negligible.
Only the tidal phenomenon known as "bore" forms an exception (cf 5, 4).

2. The estuaries are usually so shallow that various effects which are almost
imperceptible in deep water, such as bed friction and nonlinear distortion, become
appreciable or even predominant.

3. Shores and shoals substantially impose the direction of the flow of water.
The estuary may therefore be considered theoretically as a channel or as a network
of channels.

4. The inlet in which the tides penetrate is usually so much more narrow and
shallow than the sea or ocean whence the tides come, that the reaction by the inlet
on the sea or ocean is negligible or at most a secondary effect. Hence the tidal motion
at the offing of the inlet may be considered as the given source of the motion in the
estuary.

The tides are seldom of purely astronomical origin. They are in particular often
affected by meteorological conditions (storm), sometimes in a considerable degree.
Since in shallow water the nonlinear effects are strong, the deviations from the
astronomical tide (the storm surge) can not be weIl considered separately. On the
contrary the composite motion resulting from the combined astronomical and
meteorological forces must be treated as one integral phenomenon. Such tides affected
by storms wil1 hereafter be called "storm tides".

Tidal hydraulics deals with storm tides as weIl as with the normal undisturbed tides .

.The tidal motion in a channel can be described by two differential equations, thc
one expressing the conservation of mass (equation of continuity), and the other
expressing the equilibrium of forces and momentum in the Iength direction of the
channel (dynamical equation). The ways of dealing mathematically with these
equations can be grouped as follows:
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1. Harmonie methods. The composite tidal motion is resolved into harmonie
components by Fourier series, and these harmonie components are treated separately
while terms for their mutua1 interaction are introduced.

2. Direct methods. The equations are subjected immediately to some process of
numerical integration, e.g. by an iterative process, power series expansions, or by
converting the differential equations into equations of finite differences.

3. Charaeteristic methods. The propagation of the tida1 waves is analysed on the
basis of the theory of the characteristic elements of the differential equations.

1, 3. Historical survey.
At the beginning of the deve10pment of tidal hydraulics we meet the work in

England by Airy [1], which dates from the first half of the 19th century. Airy treated
the tides as periodic waves which he resolved into harmonie components. He demon­
strated that, by the nonlinear character of the propagation, an originally purely
sinusoidal wave is distorted in such a way that higher harmonie components are
being introduced.

After the middle of the 19th century de Saint Venant [2] in France approached
the propagation of tidal and similar long waves from another side. Although the
theory of the characteristics is not explicitly mentioned, it yet forms the mathematical
background of de Saint Venant's work. A contribution in this field was given likewise
by MacCowan [3] in England.

Full emphasis on the value of the characteristics for defining the propagation of
tides is laid by the Belgian Massau [5]. His work, which dates from 1900, has attracted
less attention from tidal hydraulicians than it deserved. lts merits have only been
ful1y understood about half a century afterwards.

In the 20th century the question of practical1y computing the tidal movement in
an estuary comes to the fore. De Vries Broekman [7] (Netherlands) was the first
to point out the possibility of such a computation by a direct method of finite differ­
ences, and Reineke [9] likewise developed a direct method and applied it to German
rivers.

The art of tidal computations received great stimulus by the decision to partially
enc\ose the large estuary of the Zuiderzee in the Netherlands. A state committee
under the presidence of the great physicist Lorentz was entrusted with the investiga­
tion of the tidal problems of the Zuiderzee. [12]. The committee followed two ways
of approach.

Firstly Lorentz contrived by an ingenious artifice to linearize the quadratic resis­
tance in such a way, that the fundamental harmonie component is rendered with
great accuracy. On this basis a computation method was developed to determine the
M2 component of the normal tidal movement in the channel network of the Zuider­
zee [11]. The method was used to predict the modifications in the tides after the
enclosure.

Secondly a direct method by power series expansion was developed by which
some computations of storm tides were performed.
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The work of the Lorentz committee proved to be a fertile ground for the further
development. The quadratic character of the frictional resistance encountered by a
tidal flow had always been one of the main practical difficulties for computations.
Although Lévy (France) at the end of the 18th century already had put forward the
principle of linearization in computing the tide penetrating up a river [4] and Parsons
(U.S.A.) had given a treatment by Iinearized equations in his study of the Cape Cod
canal [8] 1), the real clue has been the principle of Lorentz. The extension of this
principle to rivers with a fluviaI discharge was taken up by Mazure who developed a
method to compute the M2 tidal component on the Dutch rivers [17].

The next step in the Netherlands was the analysis of other harmonies as done
by Airy, but with the frictionaI resistance taken into consideration; Dronkers [21],
Stroband [20] and Schänfeld [28] have each contributed to the solution of this
problem.

The work of Van Veen [16] may likwise be mentioned in this context, although it
bears not so much on computation methods as on the technique ofthe electric analogue
of a tidal system.

The direct method by power series of the committee Lorentz was made fit for tidal
rivers by Dronkers [14]. In a later stage the power series were converted into expan­
sions by an iterative process [21,24]. Many tidal problems have been analysed more
or Iess intensively by these methods in the course of years [27, 32].

In the post-war period Holsters [19] (Belgium) re-discovered the work of his
compatriot Massau. The method of cross-differences which he developed and pre­
sented by the name "method of lines of influence" as an approximate characteristic
method, should in fact be classified as a direct method. [33] (cf 4, I).

The method presented by Lamoen [25] (Belgium) is an approximate characteristic
method in which the nonlinear features of the propagation are neglected, but in
which the frictional resistance is computed correctly.

A more refined application of the theory of the characteristics was given by
Schänfeld [28] who demonstrated the value of the characteristic analysis for the
fundamental discussion of the propagation of the tides.

The paper deals with its subject as follows:
First the mathematical formulation of a tidal problem is discussed (Ch. 2).
Next the groups of methods of computation are expounded in chronological

order (Chs. 3, 4, 5). In each chapter the most simple method of the group is treated
in order to demonstrate the principle. Then the more refined methods follow.

Finally a comparative discussion of the methods of computation is given (Ch. 6).
The fields of their application in European, and more particularly Dutch practice, are
indicated. Moreover a comparison with model research is made.

1) A more recent American publication is Pillsbury's "Tidal Hydraulics" (1938), which we must
leave out of the discussion to our regret, as we have not been able to lay hands on a copy.
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List of basic symbols

A
a (as)
B
b
bs
C
c(co, c+, c-)
F, G
g
H
h
i (ir' is' ia)
.i
K
I
M
m
Q
q(q)
R
r
t

U
v
w
w
X

H (Q)

z (Y)
Yp (Yp)
Zs (zs)
K (k)

cross-sectional area of streambed
depth below water surface
storing area of a seetion
storing width of water surface
surfaee width of streambed
Chézy coefficient of flow
velocity of propagation
characteristic wave eomponents
gradient of gravity
total head above datum
water level above datum
inclination (= slope)
imaginary unit
conveyance of cross-section of streambed
length of section
inertanee of section
inertance per unit length
discharge (ebb positive)
discharge per unit width (length)
linearized resistance of section
linearized resistance per unit length
time
kinetic factor
velocity of flow
quadratic resistance of section
quadratic resistance per unit length
eoordinate along ehannel (positive in seaward
sense)
charaeteristic wave impediment (wave admis­
sion)
density
time of propagation of section
relative phasc angle of n-th harmonie tides
angular frequency of fundamental tide
complex amplitude of vertical (horizontal)
harmonie tide
complex tidal impedance (admittance)
parallel admittanee, of section (per unit length)
series impedance, of seetion (per unit length)
complex propagation exponent, of seetion (per
unit length)
complex u-th harmonie Fourier coeffieient of

b = Bil
bs = bAlbh

H = h + v2/2g

)2=-1
K= CAy'as

M=lm
m = ligA

R = Ir

U = 1/2gA2
V = QIA
W=iw
w =c I/K2

"t" = Ilc
On = arg - Qn/Hn

H(Q)
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2. THE BASIS OF TIDAL COMPUTATIONS

2, I. Schematization of an estuary.

Most tidal waters have an irregular shape as weIl in plan as in longitudinal or
transversal section. Every irregularity like a shoal, isle, groyne etc., has its influence
on the local pattern of flow. It would be a considerable complication of computations
if all these local situations had to be considered in detail. Fortunately this is generally
not necessary since it is possible to compute a tidal motion accurately by means of a
rather severely schematized mathematical model, provided this model represents
correctly some particular condensed characteristics of the esturay. This must b:::
checked if possible by analysing weIl observed tides.

We confine ourselves here to the case of an estuary or other tidal water with such a
small width compared to the wave length of the tide (cf 3, 1), that the tidal flow is
directed mainly in the length of the estuary.

The bed of the estuary fulfils two hydrauIie functions. Firstly the bed eonveys the
flow of water in the length direction. Secondly the bed stores quantities of water as
the tide rises and returns them during the falling tide. Not all the parts of the bed
necessarily partake to the same degree in the two functions. Parts of the bed (the
channels) partake in bath funetions. Other parts however (like shoals, compartments
between groynes, dead branches, flooded areas, harbour areas) eontribute appreciably
to the storing function but not or relatively little to the conveying function.

The estuary is no", schematized as a channel that conveys and stores, the streambed,
and adjacent to it regions that store but do not convey. The velocity distribution in the
streambed is assumed to be uniform.

The boundary between the streambed and the adjacent storing regions is sometimes
weIl defined by the actual situation, e.g. in a river with a dead branch. In other cireum­
stances, when there is in fact a gradual transition so that the boundary is fietitious,
the schematization is nonetheless justified, provided the dimensions of the streambed
are defined appropriately. Although this can be rationalized, it always remains for a
good deal a matter of experience.

The conveying cross-section varies with the water level, not only because the depth
varies but also because there may be parts ofthe bed such as shoals, that are contribut­
ing to the conveying function when the level is high, but not when it is low.

If the cross-section of the streambed is further schematized by a rectangle, it may
therefore be necessary to apply different schematizations for high and low levels.
This may entail that a storm tide is computed with another schematization than an
ordinary tide (cf fig. I).

A second schematization is necessary in view of the variation of the cross-sections
along the conduit. For that reason the conduit is divided into sections of not too great
length. In eaeh section an average cross-section of the streambed is defined and the
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streambed in the section is treated as a prismatic channel with that average cross­
section.

The total storing area B of the water surface in the section, which is a function
of the level h, is divided by the length of the section and this quotient is considered as

shoals foreland shore--=---=--'------'-... • • ............---channel

h

zero level

b boundary of
""1..>-----------=------------l"I"st r eam bed"

--r-'"'"-<- I"__~~~-~ 1?'4-
I ,I I ",,,'/ I

rectangular
schem a ti zation
for storm tide ---+----l
tor or din a r y ti de --t--t:=::!i---\-------+-f---.J

Fig. I. Cross-section of an estuary.

the storing width b of the section. This is generally different from the surface width bs
of the streambed (b;> bs)'

Most tidal currents encounter appreciable losses of head by dissipative forces.
As a rule the losses by friction along the b0ttom are predominant but there mayalso
be appreciable losses by curvature of the channel, by its widening and narrowing and
by obstacles like groynes, bridge piers etc. Provided the sections are not too long, it
is toIerabie to merge all losses of a section into an equivalent frictionalloss of head
distributed uniformly along the section.

When an estuary is formed by a network of channels, the shoals between the
channels may be divided into separate storing regions of the adjacent channels, if
necessary with a correction for transmission of water over the shoals from one
channel to another.

A complete analysis of the estuary must deal with the channel network in all its
details. For more restricted purposes however, paraIIel channels may be schematized
by replacing them by one channel with a composed cross-section.

The admissable length of the sections depends partlyon the regularity of the estuary
and partlyon the character of the tidal motion. In a very regular conduit the sections
may be langer than in a very irregular one. Even in a very irregular channel, however,
it is sufficient that the length of the sections be small compared to the wave Iength of
the tide. In Dutch tidal practice sections of 5 to 10 km arc used as a rule.

2, 2. The differential equations.

The tidal motion in the length direction of an estuary is mathematicaUy described
by two differential equations. They can be derived by considering mass and momenturn.

Continuity equation. This follows from the Iaw of conservation of mass:
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bQ bh
- +b-=O.
bx bt

(202)

Tt expresses that the difference in discharge between cross-sections x and x + dx,
and the accumulation or evacuation of water by rising or falling of the level, must
balance each other.

When a supplementary discharge per unit length qi' e.g. to an area that is being
flooded over a dyke, must be accounted for, we have

bQ bh
bx + b bt + qi == 0,

where the term qi may depend on the head of water.

Dynamica! equation. This is based on Newton's law, which is not easily applied
directly since the mass of water we consider is variabIe by the transport between the
streambed and the adjacent storing regions. For this reason it is more çonvenient
to use the law of conservation and variation of momentum per unit length and in the
Iongitudinal direction of the estuary. From this equation we substract pv times (201)
and after introduction of some approximations of minor importance, we arrive at
the dynamical equation

bH I bv b - b, bh .
(203) bx + gbt - (1 - Y) v -gA bt + Ir = O.

The first term represents the gradient of the total head and the second term the acce­
Ieration of the velocity field. The third term accounts for the convection of momentum
by the water transported to or from the adjacent storing regions. When y = 0, there
is no convection. This means that for instanee water emerging from the storing regions
and joining the current in the streambed, derives its momentum entirely from the
motion in the streambed.

The last term of (203), the resistance slope ir, represents the dissipative forces
which are all quadratic in vso that we may put

(204)

Here Kis Bakhmeteff's conveyance and w represents the quadratic resistance per unit
length, which depends on the water level h. It can usually be treated sufficiently
accurately as a frictional resistance by using Chézy's formula, which yields

I 1
(205) w = K2 = C2A2

as
'

The coefficient C is an empirical quantity.
lt be observed that no Coriolis or centrifugal forces occur in (203) because they

are irrelevant as far as the flow in the Iength direction only has to be considered. In
computing cross currents over shoals between adjacent channeIs, it may be necessary
to account for Coriolis or centrifugal forces.

12



T1DAL COMPUTATIONS IN SHALLOW WATER

In case of a storm tide it may be necessary to introduce a term for the forces
exerted by the atmosphere, so that we extent (203) as follows:

oH 1 Ov b - bs oh . . .
(206) s + - s - (1 - Y) v -A- ~ + Ir + Is + la = O.uX gut g ut

Here is' the wind slope, represents the force exerted by the wind on the surface and ia
represents the barometric gradient.

Other farms of the equatians. A drawback of the equations (201) and (203) is that
there appear four dependant variables, Hand Q as weIl as hand v. Now it is easier
to eliminate Hand Q than hand v, but unfortunately this is of Iittle use since at the
transitions between the sections the quantities Hand Q are to be treated as continuous
and not hand v in which jumps are to be accounted for. For this reason we shall at
least eliminate ov/Ot and oh/ot by using the relations H = h + v2/2g and Q = Av.
Putting y = 0 we obtain

oQ 1 OH bmv óQ
(20?) - + b - - - -- 0

Ox 1- V2/V~ Ot 1- V2/V~ Ot -

oH 1 + ~V2/V~ oQ bmv oH
(208) Ox + 1 _ V2/V2- m bi - 1 _ v2/lOt + w IQ IQ = O.

e e

Here m = I/gA denotes the inertance per unit Iength (cf [35]) and Ve = VgA/bs is
the critical velocity (cf 5,3). Moreover ~ is put for (b - bJ/bs•

When v is negligible with respect to vc, the third terms in (207) and (208) are smal1
compared to the other terms. Then the following simplification is justified:

oQ oH
(209) Ox + b-Ot = 0

bHOQ I

(210) Ox + m bi + w I Q I Q = O.

In this case we may as a mIe put m constant and this will often be justified likewise
with band W.

If v/ve is so great that the third terms in (207) and (208) may not be dropped, still
in most cases V2 <<vz., so that we arrive at .

bQ oH oQ
(21l) ox + b-'bi -2UbQ bi = 0

oH oQ oH
(212) ox + m bt - 2UhQ bi + w IQ IQ = 0,

where U = I/2gA2 = ;gm2 is the kinetic factor (UQ2 is the velocity head). In (211)
and (212) we may treat U as a constant as a mIe, and b, mand was functions of H,
hence neglecting v2/2g in the determination of these coefficients.

As the tidal motion is often Iargely subcritical (cf 5, 3), the equations (211) and
(212) are sufficiently correct usually.
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---------- ----------------------- ----

Energy equation. In case of designing a tidal power plant the energy equation
becomes relevant:

(213)

+ pgHqj + pgQir = -- pgQ (is + ia)'

This equation can either be deduced directly from the law of conservation and dissipa­
tion of energy, or by adding pgH times (202) to pgQ times (206).

2, 3. Particularizing conditions.

When the schematization of an estuary has been fixed and the coefficients of Chézy
have been determined, a tidal motion in the estuary can be defined by a set of particul­
arizing conditions, usually involving boundary conditions (the number of which
depends on the complexity of the estuary system) and two initial conditions in the
whole system or the equivalent of them.

Where an estuary debouches in sea, the tidal motion in the sea generates the
motion in the estuary. After careful consideration of the interaction of the two bodies
of water, it is as a rule possible to set up a boundary condition for the estuary invol­
ving the total head at the offing as given function of time.

At the landward end of an estuary we have generally a condition involving the
discharge. At a closed end the discharge is obviously zero, and up a tidal river the
discharge must approach the fiuvial discharge asymptoticaIly.

The computation of the tidal motion in an estuary must moreover observe bound­
ary conditions at every transition between different channels.

When a channel is continued by another channel of different cross-section, it
should as a rule be assumed that the total head at the junction is the same in the
extremities of both channels. The discharge is likewise the same. These are likewise
the conditions to be imposed at the transition between two sections of an estuary
where no particular interference with head or discharge prevails. If there is a narrow
pass or another obstacle between thc two channels, a loss of head must be accounted
for, and when water is discharged to or from the junction from aside, e.g. bya sluice,
a difference in discharge in the two channels is introduced.

At a junction of three or more channels, the sum of the discharges through the
channels to the junction is zero. There are moreover conditions for the differences in
head between the channels.

Generally there are in total as many conditions at a junction as there are channels
meeting there, and hence there is one boundary condition per extremity of a channel.

When the heads and discharges at a definite instant are given throughout the whole
estuary, we can use this as a double initial condition.

Often it is very difficult to obtain sufficient direct observational data to construct
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such a double initial condition. It is therefore of great practical value that other
more suitable conditions equivalent to the initial conditions are possible.

Firstly we may consider a purely periodic tide. Then the condition that all heads
and discharges are periodic functions of the time with a given period, replaces the
initial conditions.

Secondly we may use the fact that the influence of an initial condition on the
subsequent motion decays and dies out gradually. It is therefore possible to compute
correctly the tidal motion in an interval of time in which we are interested, by starting
from inaccurate initial conditions, provided these conditions lie sufliciently far in the
past. The time of decay to be observed depends on the degree of inaccuracy of the
initial conditions and on the properties of the estuary system, in particular its extent.

The boundary and initialor periodicity conditions define the particular motion
under consideration, which may belong to one of the following types:
1. An ordinary tide, on a particular day.
2. An average tide, usually a lunar mean tide, either diurnal or semi-diurnal.
3. An average spring tide or an average neap tide.
4. A particular observed storm tide.
S. A hypothetical storm tide, generally of excessive height.
6. A tide on a river encountering a fluvial flood.

When there are more observational data on a tidal motion than needed to supply
the necessary particularizing conditions, the redundant data may be used for checking.
For the Chézy coefficient is so much liable to variations and moreover related so
c10sely to the manner of schematizing, that a check as mentioned is practically indis­
pensabie in most cases.

In principle the value of C should be determined for each section separately and
as a function of time. Judging from the computations of Faure [34] for the Gironde
estuary, the variations in C may then be very considerable. According to the Dutch
practice however, variations in C can as a rule be made relatively small by careful
schematization, although rather great deviations near slack water cannot always be
eliminated. This is of little practical consequence since the resistance near slack water
is weak and hence relatively great errors in Care permissable then. For this reason
good results are obtained by taking C constant throughout large parts of the estuary
system and throughout the entire tidal period or the entire flood or ebb interval.
The value of C varies from about SO m!/sec in the shallower rivers to 70 m!/sec in
the deep inlets.

When a new canal is dug or when an estuary or part of it is modified radically, the
value of C has to be assumed. It is then recommendable to estimate the possible
deviation of the assumed value and to compute the influence of such a deviation.
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3. INTEGRATION BY HARMONIe eOMPONENTS

In this ehapter we contine ourselves to the periodic tide. First the simplest method
to deal with such a tide is expounded: the equations are linearized which makes it
possible to consider the tide as sinusoidal (3, 1). Next the nonlinear terms are treated
and the interaction of harmonie components is investigated. The formulae dealing
with a second harmonic are developed more in detail (3,2-3,4).

3, 1. Single-harmonie method.

Suppose that b, mand w in (209) and (210) may approximately be put constant.
Then all terms in these equations are linear, except the resistance term which is
nonlinear in Q.

Now consider an estuary without or with little f1uvial discharge, where the tidal
currents vary approximately by a sinusoidal trend. According to Lorentz [12] we
may then replace the quadratic resistance by a linear resistance r Q where

8
(301) r = w 3n IQ I= 0.85 w IQ I·
Here I Q I denotes the amplitude of the tidal flow.

The relation (301) was set up by Lorentz on the assumption that the dissipation by
the fictitious linear resistance should equal that by the real quadratic resistance.
Afterwards Mazure [17] showed that (301) ean be obtained as weIl by a harmonie
analysis. This analysis can also be applied if there is an appreciable f1uvial discharge
Qo, in combination with a tidal flow Q1 = re Q expjwt. Then we tind

w I Qo + Q1 I (Qo + Q1) = ro Qo + r1 Q1 + higher harm.,
where

a) ro = wko IQ I~ w (1.271 Q I+ 0.23 Q~ / IQ I); b) ro = w (Qo + t IQ I 2/QO)
and
(302) a) r1 = 2wk1 IQ I ~ w (0.851 Q I+ 1.15 Q~/ IQ I); b) r1 = 2wQo

when a) Qo < IQ I or b) IQ I< Qo'
The formulae sub a are approximations deduced from (330) (cf 3, 3).

We can separate the mean motion Qo and the tide Q1 (cf 3,4), ànd here we shall
contine ourselves to the tide. Then we determine a linear resistance r by (301) or
(302), using estimations for I Q land if necessary Qo, to be checked afterwards, and
obtain the linearized equations

oQ oH
(303) ox + b bi = 0

oH oQ
(304) ox + m bi+ r Q = 0,

in which b, mand rare now to be considered as given functions of x. We shall for
the moment contine ourselves to the case that b, mand rare constants, at least section­
wise. In an appendix we shall deal briefly with the variability of b, mand r.
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TIDAL COMPUTATIONS IN SHALLOW WATER

The equations (303) and (304) admit periodic solutions of the sinusoidal form

(305) H = re H e jOJt = I H I cos (wt + arg H)

(306) Q = re Q e jwt = I Q I cos (wt + arg Q).

Here Hand Q, satisfying the ordinary differential equations

dQ
(307) J-; + jwb H = 0

dH
(308) dx + (jwm + r) Q = 0,

denote the complex amplitudes of the vertical and horizontal tide, i.e. the modulus
represents the amplitude and the argument represents the phase of the tide.

Both for the physical discussion and for the practical solution of the above equa­
tions it is convenient to introduce the tida! impedance Z = H/Q and the tida! admit­
tance Y = I / Z = Q/H (cf [28] eh. 4 sect. 23). IY I represents the quotient of the
amplitudes of horizontal and vertical tide whereas arg Y corresponds to the angle of
phase lead of the horizontal with respect to the vertical tide. From (307) and (308) it
can be deduced that Z or Y must satisfy the differential equation of Riccati

dZ dY
(309) a) dx = Yp Z2 - Zs or b) ;r; = ZS Y2 - Yp ,

where Yp = jwb and Zs = jwm + r.

The general solution of (309a) or b) is

Zo-Ze tanhkx Yo-Ye tanhkx
(310) a)Z=------- orb)Y=---- -------,

I - Zo Ye tanh k X I - Yo Ze tanh k X

where Zo or Yo is an integration parameter, whereas furthermore
;--- - . r-- r~

k = V Yp Zs Ze = V Zs / Yp Ye = I/Ze = \ Yp / ZS'

From any solution Z (x) or Y (x) we can derive solutions for Q and H by (307) or
(308) :

(311) a) Q=Qoexp-KQ(x) and b) H=QoZ(x)exp-KQ(.\:)
or

(312) a) Q = Ho Y(x)exp-KH(x),

where x

KQ = JZYp dx
o

or

x

K H = JY Zs dx,
o

H = Ho cosh k x - Ze Qo sinh k x
Q = Qocoshkx - YeHosinhkx.

and where Ho or Qo is an integration parameter.

From (3IOa) and (311) or from (310b) and (312) we deduce the general solution for
Hand Q:

(313)

(314)

2 17
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This mayalso he obtained by more eonventional methods from (307) and (308) or by
using the partieular solutions to the dieussion of whieh we are now proeeeding:

We put in partieular Yo = ± Yc in (31Ob). This yields the elementary solutions
Y = Ye and Y = -Ye whieh are constant.

From this we derive the solutions

H=Hoexp-kx and Q=HoYeexp-kx,

for Hand Q, from whieh follows
H = I Ho I e -(re k) x cos [wt - (im k) X -I- arg Ho]

and
Q = I Ho I1 Ye I e -(rek) x cos [wt - (im k) X -I- arg Ho -I- arg Ye].

This represents a harmonie wave with the wave length (2n / im k) and travelling with
the phase velocity (w / im k) in the positive sense of x. The wave is purcly periodie in
tand damped periodie in x. The damping is exponential at the rate (re k) per unit
length. Hence k is ealled the complex propagation exponent per unit length. The
horizontal tide Q leads by the phase angle (arg Ye) with respect to the vertieal tide H.

The solutions
H = Ho exp k x and Q = -Ho Ye exp k x,

derived [rom Y = -Ye, represent waves traveIling in the negative sense (cf [28] eh.
4, seet. 23).

The interference of two waves traveIling in opposite senses is represented by
superposition of the eorresponding solutions. In this way we arrive at

(315) H = H+ exp - k x -I- H- exp k x

(316) Q = Ye H+ exp - k x - Ye H- exp k x.

Here H+ and H- are integration parameters. The reader may verify that (315) and
(316) are an alternative form of the general solution (313) and (314), by putting
Ho = H+ -I- H- and Ze Qo = H+ - H-.

When we consider another partieular solution Z(x) or Y (x), we arrive at other
types of solutions for Hand Q. By putting Yo = 0 in (31Ob) for instanee, and then
substituting for Y in (312), we obtain all the solutions for which Q = 0 at x = O.
In a similar way Zo = 0 in (3IOa) yields all the solutions for which H = 0 at x = O.
Sueh solutions may be interpreted as standing harmonie waves (cf [28] eh. 4, secl. 23).

Appendix to 3, 1.
In order to deal with the variations of b, mand r in dependenee on x, we divide

the estuary in sections so smaII that in each of them we are aIIowed to take mean
values for b, mand r. We may then apply (3 I 3) and (314) from section to section. This
demands much computing labour whieh often can be redueed considerably by making
use of the functions Y and Z, in partieular when we ean set up a boundary condition
for Y or Z; this is often possible. Then we compute Y or Z by (31Ob) or (31Oa) from
section to section, and thence deduce Hand Q.

18



TIDAL COMPUTATIONS IN SHALLOW WATER

A slightly different procedure was followed by Dronkers [21], who first computed
the argument of Y by relatively long sections, utilizing the fact that on many rivers
arg Y varies slowly with x.

In many cases the sections have to be so short in view of the variability of b, mor
r, that the integration procedure can be simplified to a finite difference calculus.
Suppose there is a boundary condition for Z. Then Z is computed from section
to section by finite differences as follows:

Let Za and Zb be the values of Z at the ends of a section (xl<' xb) with the length
1= Xb - X a . Then by (31Oa) approximately

(317) Zb - Za = Yp Z~ - Zs'

where Yp = Ypl = jwB is the parallel admittanee of the section and Zs = zsl =
jwM + R is its series impedance. Moreover Zm = ! (Za + Zb) When either Za or
Zb is known, Zm can easily be estimated fairly correctly and then a construction
according to (317) yields Zb or Za respectively. The estimation of Zm is then checked
and if necessary the construction is repeated.

For numerical computing it is more convenient to modify (317) into

(318) Zb - Za = Yp Za Zb - Zs,

from which either Zb or Za is easily solved when Za or Zb is known.

If Z becomes too great (say IZ I~ vi Zs / Yp) the variations Zb - Za become
excessive and integration of (31Ob) is more accurate then.

In fig. 2a a graphical construction for the Panama sea level canal is represented.
If the Caribbean Sea were entirely tideless, the boundary condition Z = 0 would hold
good there. Since there is some tidal motion HA (which is given), ZA is not zero but
relatively smal!. This small value can be computed with a very satisfactory absolute
accuracy by ZA = HA / QA' even if we use a rather crude estimation for QA- Such
an estimation may be obtained as discussed further below. Hence we start from ZA
as boundary condition and construct Z sectionwise from A to P by (317) and then
determine Q by (31Ia), x

p

Q = Qp exp - KQ , where - KQ = ryp Zm
Xi

is computed sectionwise; furthermore Qp = Hp / Zp follows from the given Pacific
vertical tide. Finally H = Z Q in virtue of (311 b).

Additions or subtractions are performed by vector construction in the diagram
whereas the multiplications are performed by adding arguments constructively and
multiplying moduli by means of a slide rule.

After having finished the constructions the estimated discharges used in defining
the resistance by (301), and moreover ZA' are checked and the computation is repeated
if necessary.

The computation was executed for a schematized canal of 72 km length, 180 m
width and a depth below mean level varying from 18 mat the Atlantic to 21 mat the
Pacific end. Chézy's coefficient was put 74 mi/sec. These are the assumptions of
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TIDAL COMPUTATIONS IN SHALLOW WATER

Lamoen [25]. For eomparison the harmonie analysis of the results of an exaet eompu­
tation by eharaeteristies (cf 5, 3 and fig. 6) are likewise represented in fig. 2.

Fig. 2. Single-harmo­
nie method applied
to Panama sea level
eanal.

3

Hp

\

2

Caribbllen

Slla

OCllen

o
240 0

250

+ prelimlnary estlmate

---}anaIYSiS of
.L exact computatlon

A simple way to estimate fairly eorrectly the diseharges in the eanal, is as follows:
Let W, Mand B denote the resistance, inertanee and storing area of the who1e

eanal. Let Qe represent the diseharge in the middle C of the eanal. Now aceording
to (301) we put R = 0.85 W I Qe , and then we deduee from (308) the approximation

HA - Hp = (jwM + 0.85 W 1Qe I) Qe ,

where the left-hand member is known. Taking absolute values of both members
yields aquadratie equation in 1 Qe 1 2 with a unique solution by virtue of 1 Qe 1

being rea1 and positive. After substitution of 1 Qe 1 in (319), Qe ean be solved.

Then we put He = ! (HA + Hp) and compute with the aid of (307):

QA = Qe + !jwBOHA + !He) Qp = Qe-!jwB(!Hp + !He).

These results for Q, whieh are represented in fig. 2, ean be used as basis for the above
more detailed analysis.
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TIDAL COMPUTATIONS IN SHALLOW WATER

3, 2. Preparations for multiple harmonie methods.

The approximation of a tide by a simple sine funetion, however useful for explor­
ing a tidal problem roughly, is too erude in many cases when a more detailed investiga­
tion of the tidal phenomena is demanded. We ean then try to treat thc tidal motion
as a purely periodie phenomenon eomposed of a fundamental and higher harmonie
eomponents. The period will as a rule be thc period of the lunar tide (12 hours 25
minutes).

The eomputation of thc fundamcntal component is relatively easy as long as the
higher harmonie eomponents are not too strong (say less than 40% of the fundamen­
tai). The infiuenee of the latter on the fundamental is negligible then, so that thc
fundamental may be eomputed substantially along the lines of the preeeding section.

The higher harmonie components demand mueh more computation labour and
ihis labour inereases disproportionally with thc number of harmonie eomponents
to be eomputed, owing to the strong mutual interaction of higher harmonie compo­
nents. This is assoeiated with the [act that the deviations of a tidal curve from the
simple sine form, or from a combination of a zero, a fundamental and a seeond
harmonie component, are generally not weil represented by onc single higher harmon­
ie component.

In regularly shaped rivers the seeond harmonie component is as a rule a fraction
of the fundamental, and the third is a fraetion of the seeond harmonie (in the Duteh
rivers a half or less, and one third respeetively). In sueh eireumstanees a eomputation
of zero, first and seeond harmonie component only, will meet most practical require­
ments. Oeeasionally the higher harmonies are so small that they may be negleeted
altogethcr.

In other cases, e.g. in more irregularly shaped rivers and estuaries, the second
and third harmonie are possibly appreeiable and of equal order of magnitude. Tt
would then bc nceessary to eompute thc third harmonie as weU sinee the first and
third harmonies together produce a seeond and other harmonies owing to the non­
linear terms in the differential equations, in partieular the quadratic resistance.

Tt may be assumed that it is economie as a rule to eompute the seeond harmonie.
When this is no longer suffieient sa that further eomponents are required, abandoning
the harmonie method for an exact method, e.g. by a eharacteristie analysis (cfCh. 5),
is usually preferabie. For that reason we shall hereafter confine ourselves to develop­
ing the formulae for the zero, first and seeond harmonie. The formulae for the third
and higher harmonies may be derived if necessary along similar lines of thought (cf
the appendix to 3,3).

We base ourselves on (211) and (212) where we treat b, mand w as functions of
H ; we put U constant.

We eonsider a periodic tide with period e and fundamental angular frequeney
w = 2n / e and expand Hand Q in Fourier series. Henee

H = Ho + Hl + H2 • ••• ,
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TIDAL COMPUTATIONS IN SHALLOW WATER

where
H = H e jnmt _1- H e -jnmt = 2 IH I cos (nWl _I arg H )

11 n 1 n Ol I n·

Here Mn denotes the complex conjugate of Hno The constant Ho is the mean head,
H] the fundamental tide, H 2 the second harmonie tide, etc. The modulus of the
complex constant Hn represents half the amplitude of the n-th harmonie component
and arg H n its phase. So H of the preceding section is 2H].

In the same way we analyse Q:

Q = Qo + Q] + Q2 + .... ; QIl = Qn e jnmt + cc(n ~ I).

Here Qo is the mean discharge (on a river identical with the fiuvial discharge). Fur­
thermore cc denotes the complex conjugate of the preceding term.

Usually higher harmonie components are weaker than lower ones. Yet this is not
at all a rule without exceptions. We shall assume however, that the fundamental
dominates over the second and higher harmonie components. Then we may usually
assume moreover that the variations of b, mand win the course of time are substan­
tially defined by the fundamental vertical tide. So we put

(319) b = beo) + b(J) H].

Here

where

71:

beo) = LJb (Ho + 2 I H] I cos -&) d -& ;

-71:

71:

bel) I H] I = LJb (Ho + 2 I H] I cos -&) cos -& d -&,

-71:

,& = wt + argH].

Usually these coefficients beo) and bel) are al most independent of the amplitude
2] H]I.

Similarly we put
(320) m = m(o) - m(J) H],

where m(O) and m(J) may be defined in the same way as beO) and b(J). Instead we may
apply an analysis as following below for w.

In a channel with a rectangular cross section we have

1
w= .

C2 b; a3

Now neglecting the velocity head we may put

a = ao + H] + H 2 ,

where ao is the average depth during the tidal period. As H 2 is assumed to be small
compared to ao+Hl> and H] < ao, we expand in powers of H 2 as follows
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1 3
w = Ó-~-(-;;;+-H]J3 - C2 b;(ao + H])4 H2 + ..... "

For the sake of brevity we shall further omit the terms with H 2 which are often
negligible. Then we can put

(321) w = w(o) - wel) (H] e jwt + cc) + W(2) (H~ e 2jwt + cc),

where the coefficients w(O), w(I) and W(2) are defined by Fourier analysis of the factor

1 1
(ao + H])3 [aD --j-21--::HC::--]'I-c-os-(-;-(()-t-+~-a-rg-H=-:])-::]3

This yields

Tt now remains to analyse the quadratic factor 1 Q I Q in the resistance. In view
of the importance of this factor we shall devote a separate section to it.

5

5

5

a~ + 2[ H] 1
2e (3)

w(o) =~ __0 __

C2b2a3 C2b2via2_ 4 IH I2sos 0 ]

e (3) 3a
I Hl 1 • wel) =--]- = -=cco ==--cc-==

C2 b2a3 C2b2y1a2_ 41 H 1 2sos 0 .]

e (3) 6
1 H 1 2 W(2) = __2_ =

]. C2b2a3 C2b2via2~ 4 1 H 1 2sos 0 ]

For the general definition of the coefficients en(r) cf [28] eh 14 sec 11.

3, 3. Analysis of the quadratic resistance.

In case Q keeps the same sign, say +, throughout the entire period, the analysis
of the quadratic factor 1 Q I Q = Q2 offers no particular difficulties. Neglecting third
and higher harmonics in Q as weIl as in Q2, we find by simply executing the multi­
plication of the series for Q with itself:

(322) Q2 =, (Q~ + 2 IQ] 12 + 2[ Q21 2) + [(2 Qo Q] + 2 cL Q2) ejwt + cc] +

+ [(Q~ + 2Qo Q2) e2jW
( + cc].

When Q changes sign during the period, the analysis of I Q 1 Q becomes much
more complicated. The fi.rst who treated this problem was Mazure [17]. He confined
himself to the case that Q is a simple sine function,

Q = Qo + (Q]e jW{ + cc) = Qo + 2[ Q] Icos (wt + arg Q]).

Then 5 = IQ IQ is a non-sinusoidal periodic function which can be decomposed
in a mean value 5 0, a fundamental 5] etc. Mazure demonstrated that, in case Qo = 0,
this fundamental 5] is exactly Lorentz' linearized resistance defined by imposing the
condition that the linearization should yield the true dissipation of energy during an
entire period.

I

I

r

f
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After the work of Mazure it has been tried to extend thc theory by considering
also the higher harmonic components. This encounters great practical difficulties
however as we explain below:

In order to perform the integrals of the FOUTier analysis the instants at which the
flow turns have to be determined, because at those instants the factor S = I Q I Q =
± Q2 changes sign likewise. The instants of slack water are defined by goniometric
equations. Even if we neglect the third and higher harmonics in Q, this goniometric
equation is still equivalent with a quartic algebraical equation and therefore it is not
possible to represent the roots by a simple formula. Consequently the results of the
FOUTier analysis can not be brought into a workable form either.

Therefore we must have recourse to approximate procedures. One of these proce­
dures consists in approximating the instants of slack water by the zeros of Qo + Q].
This we treat below in connection with Schänfeld's turning function (cf [28] Ch 14,
sect 122). In an appendix we shall deal with more refined approximations.

We introduce a turning function T defined by

+ I if Q > °
T(t) =

if Q < 0,

so that we may put S = I Q I Q = T Q2. The FOUTier coefficients of T, defined by

n

Tn = 2~ JT(t)e-jIlW!d(wt),

-n

might easily be computed if we knew the instants of slack water. When there are
two slIch instants in a period, we have

(323)

wt]- wt]
a) To=-- ±

n

b) T ~~L [e -jll"'!; _ e -jIlUJ!,],
11 nn

+ if t] > t~

- if t] < t~

cos y = Qo / 2 I Q] [,

Q = Qo + Q] = 2 I Q] 1 [cos y + cos (wt + arg Q])].

where t] is the instant at which Q turns to the positive and t~ the instant at which
Q tllrns to the negative.

Now we shall approximate t] and t ~ by the zeros of the fllnction Q0 + Q]. We
assume Qo < 2 IQ] I for otherwise there is usually no slack water at all.

We slIppose Qo > °and introdllce an allxiliary angle y by

(324)

so that

(325)

Hence

(326) a) wt]=n+y-argQ]; b) wt~=n-y-argQ].

74



TIDAL COMPUTATIONS IN SHALLOW WATER

By substitution of (326) in (323) we deduce

(327) T =-~ k~ -+- Ek;; (ejl/ arg Ql. e jwt -+- cc),
1/=1

where

(328)
2y

a) k~ c= 1 ---
n

2sinny
b) k~ = (-lr+1 --- (n =ie 0).

nn

where

(331)

Now we proceed further as follows:

(329) TQ2 = T(Qo -+- Ql -+- Q2 -+- .. ..J2 = T(Qo -+- QIJ2 -+- 2T(Qo -+- Ql)'

. (Q2 -+- Qa -+- ... .) -+- T(Q2 -+- Qa -+- ... .)2.

We contine ourselves, as said before, to the case that Qa etc. may be be neglected. So
we drop the terms 2 T(Qo -+- Ql) Qa etc. Then the term T(Q2 -+- ... .F is Iikewise
negligible as a mIe.

Applying (326) and (327) and dropping third and higher harmonies yields

(330) T(Qo -+- QlF =, 4 k o I Ql 12 -+- 4 k l I Ql I (Ql e jwt -+- cc) -+-
+- 4 k 2 (Q~ e2jwt -+- cc),

(
2Y) 3k o = I-~ (; -+- cos2 y) -+- 2n sin2y

k l = (I - ~) cos y + ~ (~~ sin y -+- ;; sin 3 y)

1 ( 2Y) 1 l' 1 .k2 = -4 1-;- -+-; (3 sm 2Y-24 sm 4y).

The above result conforms to Mazure's analysis.
The introduction of the second harmonic of Q produces a number of terms of

which the following are the most important:

4k~ 2 -

2T (Qo -+- Ql) Q2 = IQ~I (Ql Q2 + cc) -+-

+ 4 k~ (CL Q2 e jwt -+- cc) +- 4 k~ IQl I(Q2 e 2jwt + cc) -+- .

Here
k~ = ( 1 -- ~) cos y -+- ~ sin y

, 1 ( 2Y) I.k = .,- 1 ---- -+- --- sm 2y
1 - n 2n

, 1 l' l'k
2

= - C sm y -- ij sm 3y).
n

For the derivation of these coefficients we must apply (328) for n = 0, I, 2, and 3,
and (324) (cf 28 eh. 14, sec 122).
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The above analysis yields fairly accurate results even if the second harmonie
component is appreeiable, say 40 or 50 %of the mean and the fundamentaI. This is
explained as follows:

Dropping the seeond harmonie only affects the approximations for the instants
of slaek water. This means that in the interval between the assumed and the real
instant of slaek water, a wrong sign is appended to Q2. This is of relatively little
eonsequenee however, since Q2 is small near slaek water.

Appendix fo 3, 3.

When the higher harmonies in Q are strong, the above analysis is no langer
applieable. In this appendix we treat briefly two methods to be eonsidered then.

I. We approximate I Q I Q by a polynomial, e.g. a cubic, as follows:
Let Qm + Qd be the greatest and Qm - Qd the smallest value of Q during a period

in a definite place (Qd > Qm; otherwise there is no slack water). We introduce the
parameter p = Qm / Qd (0 -<.p < I) and put x = (Q - Qm) / Qd' Then we have

IQ] Q == Q~ lp + x I(p + x).

Now expand IQ IQ in the interval- I ~ x~ 1 by the series:
.,..

I Q I Q = L SnPn(x),
n=O

where Pn (x) denotes the polynomials of Legendre. By virtue of the faet that these
polynomials are normal, we have

+1

2;;~ Sli = Q~ f !p + x I (p + x) Pn (x) dx.

-1

By these integrals the eoeffieients Sn are defined as functions of p. We terminate after
S3 and then obtain the eubie approximation:

( ) -- I I Z QZ Q3332 S - Q Q R:i no Qd + n] Qd Q + nz + n3 -.

Qd

The coefficients no, nj, nz and n3 are functions of p (cf [28] fig. 105).
By substituting the Fourier series for Q in (332), the series for Sis easily dedueed.
An alternative approximation in the form of an odd power polynomial of the

seventh degree, as deduced by Stroband [20], holds good for the circumstanees on
the Duteh rivers, but the cubie (332) has a considerably wider range of applieation.

It has appeared that the procedure by Legendre polynomials is not quite free
from objeetions, which make an extension beyond the third degree not advisible.
For this reason recently the problem has been approached from a new angle:

2. We treat the factor IQ IQby first analyzing IQIas follows:
From the Fourier series for Q we can easily deduce a series for Q2. Then we have
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IQ I= VQ2 = vi> [1 +9(t)] ,
where

n 211

P = Q~ +- 2 I; I Qp 12 and cp(t) = L; (Bq eiqwt +- cc),
p=l q=l

where Bq denotes a set of coefficients depending on the Fourier coefficients of Q.
If max cp (t) during a period is less than I, we can apply the binomial series

V Q2 = VP 1: (*) [~Bq e jqwt +- cc 1p
p=O p q=! J

In practical applications however, max cp may very weIl be nearly I or greater. In that

case we write

(333) V I +-cp(t) ~ 1 +- tcp(t)-a cp2(t),

where a is defined as follows: let A be an estimate of max cp, then we require a to
satisfy

vi I +- A = I + tA - a A2.

The value of a is not very sensitive to variations of A. Now by virtue of
Q2

cp=p-I

we have

(334)
_ Q2 Q4

S = I Q I Q ~ QV p [Ct - a) +- Ct +- 2a) p - a p2 ],

by which the Fourier coefficients of Scan be deduced.
The clue of the above method lies in the fact that (333) is most accurate for the

greater values of IQ I. Perhaps it is less accurate for small values, but this is of little
consequence since then the product IQ I Q is smal!.

In order to demonstrate the value of the above approximations we consider an
example in which the second harmonie is twice as strong as the fundamental:

Q = cos wt + 2 cos 2wt.

Exact numerical analysis yields
IQ IQ = 0.36 +- 2.62 cos wt +- 4. cos 2wt +- 0.7 cos 3wt +- 0.1 cos 4wt.

Furthermore we obtain by (332):
IQ IQ = 0.42 +- 2.72 cos wt +- 4.17 cos 2wt +- 0.9 cos 3wt +- 0.4 cos 4wt.

Finally (334) yields
IQ IQ = 0.31 +- 2.55 cos wt +- 4.06 cos 2wt +- 0.75 cos 3wt +- 0.22 cos 4wt.
Apparently the latter is the closest approximation.

3, 4. Separation of harmonie eomponents.

The Fourier expressions derived above are now substituted in the terms of the
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differential equations (211) and (212). Then we have, confining ourselves to zero,
first and second harmonics:

oQ = dQo +i (~QI1 ejl1UJ! + cc).
ox d X 11=1 d x

Furthermore (cf (319)):

oH 2 oH
I1

oH
lb- = b(O)}; - + b\l) Hl --- =

ot 11= / bt Ot

= (jwb(O)Hl e jW! + cc) + (2jwb(0)H2e 2jw! + cc) + (jwb(l)H~ e 2jw! + cc).

Here terms which are usually negligibly small have been omitted. In the third term
of (211) which is small, we confine ourselves to the terms:

-- 2 U b Q ~q = - 2 U beO) (Qo + Ql/Ql =ot ot
= - (2jwU beO) Qo Ql ej,,)! + cc) - (2jwU beo) Q~ e 2jw! + cc).

In a similar way we get in the dynamic equation (cf (320), (321), (330) and (331) ):

bH dHo 2 (dHI1 • )
-=--+}; -eJl1w!+cc
ox dx 11=/ dx

m bo7 = - 2wm(1) 1Hl I· I Ql 1sin 01 + (jwm(O) Ql e jlJJ! + cc) +
+ (2jwm(0) Q2 e2jw! + cc) - (jwm~l) Hl Ql e 2jlUl + cc)

oH .
2 UbQ&= 4 (J) Ub(O) IQll.[ HIJ sin0l -(2jw Ub(o) QOHleJW! + cc) +

- (2j w U beo) Ql' Hl e2jw! + cc)

( ) ( , ( reeQ~ (2)
11' I Q I Q = 4koW 0 I Ql 12 - 8 kIWI) [ Hl I. IQll2 cos 01 + 8 k 2 11' 0) I Ql 1 +

, (1) -
- 8 k l 11' re (Hl Ql Q2) +
+ [4 k 111'(0) I Ql 1 Ql- 4 k011'(l) Hl I Q lI2+4k;11'(0) QlQ2+4kl11'(2)H;[Ql!Ql

- 4 k 211'(1) Hl Q; - 4 k~11'(l) Hl IQl IQ2] e jW! + cc +
+ [-4k111'(1) Hl 1Ql 1Ql + 4k211'(0) Q~+ 4k~11'(0) I QlIQ2 +4ko11'(2)H; I Ql12+
-4k'11'(1)H Q- Q]e 2jUJ!+cc1 1 1 2 •

Here 01 = n + arg Ql- arg Hl denotes the angle of phase lead of the current
fundamental Ql with respect to the head fundamental Hl'

When the above expressions have been substituted for the terms of the differential
equations (211) and (212), these equations can be resolved into separate equations
for each harmonic component.
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The terms independent of t must satisfy the equations

dQo
-- =0
dx

dHo (
d~ + 4 k o w 0) I QI IZ + w (4 U b(O)~~nfI» L!!d_lQz~in 0-!. +

-8klw(1) IHII·I QIIZcos 01+

'( ~ (Q~ Qz) , 11) - __+8kzW 0) !QI 1 - 8kl w re (Hl QI Qz) - O.

The underlined terms are as a rule small compared to the main terms which are not
underlined. Double underlining denotes the smallest terms.

The eoeffieients of the factor e jwt must satisfy

(337) ~~I + jwb(O) H I - 2jw U b(~Jlo!J~ = 0

dH I (
(338) -- -f-jwm(O)QI- 2jwUb(0)QoH I + 4klw 0) IQI IQI- 4kow(I) Hl IQI IZ +

dx -- ---- ----------

4k ' (0) -Q Q 4k ,ez) HZI Q IQ- 4k (I)H- QZ 4k' ,(I) H- IQ IQ --- 0+ I W 1 Z+ 1)1, 1 1 1- zW 1 1- 0)1, 1 1 Z-·
---- - ------._----

The underlinings again denote orders of magnitude.

The coefficients of éjwt must satisfy

(339) dQz + 2jwb(0) H + jwb(I) HZ __ 2jwb(o) U QZ = 0
dx Z 1 _~ I

dHz (
(340) -- + 2jwm(0) Qz - jw (m 1) + 2 Ub(O)j Hl QI - 4 k IW(I) Hl IQI I QI +

dx ----- --- --------- -------- -- ----- - --

+ 4 k z w(O) Q~ + 4 k~ w(O) IQI [ Qz + 4 kow(Z) H~ IQI IZ - 4 k; W(I) Hl QI Qz = O.

All these terms are small compared to the main terms in (337) and (338).

Thc solution is searehed for along the following line:
First we neglect the double underlined terms in (337) and (338) and solve the funda­
mental tide substantially as described in 3, 1.

Then we drop the double underlined terms in (336) and compute Ho by numerieal
integration. Here we ean be supposed to know Qo and one boundary eondition for
H (estuary or maritime river), or we have two boundary conditions for H (eanal
between two seas or the like).

Next we substitute the results for the zero and first harmonies in (339) and (340).
These equations are linear in Hz and Qz and nonhomogenous. They are solved by
applying the theorem that every solution can be expressed as the sum of an arbitrary
partieular solution and a eomplementary function being a solution ofthe homogenized
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subsidiary equations. An arbitrary particular solution is easily constructed by
integration by finite differences from section to section, and complementary functions
can be determined substantially as described in 3, l.

Finally we correct the fundamental and zero harmonies for the double underlined
terms.

We conc1ude by making two remarks :

The influence of the small terms presents an intricate question. In order to justify
the negleet of certain terms, it is not sufficient to verify that each of these terms is
smal!. It may be that a rather great mlmber of small terms all have the same sign so
that they accumulate. If this occurs, it may be worth while to compute these terms,
at least some of them, in order to get an idea of the tendency of their influence.

If other terms than those presented above have to be introduced, e.g. by making
use of one ofthe analyses ofthe appendix to 3,3, the derivation ofthe formulae follows
substantially the same line.
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4. DIRECT INTEGRATION

First the finite difference methods are discussed, both in the original quad-scheme
and in the more recent cross-scheme (4, 1). Then the principles of the more refined
methods of power-series and iteration are expounded (4,2). This is followed by various
applications of these methods (4,3-4,5).

4, 1. Finite difference methods.

Among the first who proposed the numerical computation of tidal movements are
de Vries Broekman [7] and Reineke [9]. Both put forward a direct integration of the
differential equations by finite differences. More recently Holsters [19] has introduced
another method which we consider as a modified application of the idea of finite
difference integration.

The efficiency of this kind of methods is greatly improved by arranging the first
order differences symmetrically such that the second order differences cancel. In order
to discuss this, let the time be divided into relatively small intervals of equal duration
l\J whereas the estuary is divided into rather short sections. Then a grid is formed in
the lx-diagram as illustrated hy fig. 3, in which AF may represent an estuary with the
in1et at F and its landward extremity at A.

t, t. tJ t" ts
~~t---:-~ t -:'-45 t-l.....s t ----l-.4 t~~ t-:-~ t--:

,---+--+--+--I---I---I--+--+-- t

r-~+--~.-~I-~k-~-~k--+---;k--j....

Z56
t_B'-+--S.j-~~~~-+-~~+--~

Z"5
t_c+--~~-=~:!J----'~-+-----*-+

Z3"
t_D-+---"'-I-~~'t-------"''''JIf---=4-~--+--+
Z23

t_E-+---'-'+-==t~~4------=~-+--*-+
Z12

LF.-+-_'-'-'---=-"""'---=..:..1---':.:.>IL---=-"---=-'----L.--'''-

x

Fig. 3. Grid for difference methods.

Two main procedures are to he distinguished: working by quad-differences or hy
cross- differences.

Quad-differences. Let Q be expanded in a Taylor series in the environment of the
centre M ofthe rectangle 11-21-22-12. Then
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Qll=QM-H Qx 112-! Qt/t+t QX)l~-lQxtl12/ t+tQtilf+41H Qxxx l:2-

- i6Qxxt l}2

Q21=QM+! Qx 112+~ Qt t Qxx l}2+ 1QxJ12 .\.t+t Qtt/\f+ ..

Q12=QM-§ Qx 112-! Qt I\t+t QX)}2+tQxtl12 Lt+t Qtt~~t2_ .

Q22=QM-J Qx 112+§ Qt!\t+t QX);2-1QxJ12L\t+tQtti~t2- ,

where the index x denotes a differential quotient with respect to x and the index t

one with respect to t. We deduce approximately

(401) Q" = Q~l +g!~=-Q12=~2 .
. 2112

Here the first neglected terms are of the second order in 112 and \t as comparcd to
Q)12' In a similar way we have

h21 + h22 - hll - h 12(402) h --- - - --
t - 2L~\t

Moreover

(403)

and b ~ b(h) may be considered as accurate in the same degree as (401) and (402).
Substitution in (201) yields

- I
(404) ! (Qll + Q21- Q12 - Q22) + B12 (h) 2/\t (h 21 + h22 - hll - h12) = 0,

where B = bi denotes the storing surface of the section considered.
In a similar manner we reduce (203) to

112
(405) !(Hll + H 21 - H 12 - H 22) + 2~- (V21 + V22 - Vll - v12J+ gHr = 0,

g L\t

where we put

(406) H r = W12 (h) H I Qll I Q22 + I Q121 QuJ,

by W12 denoting the resistance of section AB. In (405) the third term of (203) has
been neglected.

Similar equations are deduced for the quads 12-22-23-13, 13-23-24-14 etc. The
whole set of equations is soluble provided a sufficient number of boundary and initial
values is supplied.

The method presented is substantially that of de Vries Broekman. The method
of Reineke differs from it in that the derivatives with respect to t are not reduced to
differences: they may be determined graphically for instance.

The method of quad-differences has not been applied very often in practice. This
is due to the fact that other methods offered greater possibilities.

Firstly the power series or iterative method (4,2) had advantages with regard to
the accuracy. An improvement of the accuracy can be attained either by considering

32
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shorter sections, or by introducing higher order corrections. The former entails
revising the schematization which is very laborius, and for the latter the power series
and iterative method are better suited.

Secondly the method of quad-differences is not weil suited to deal with single
boundary conditions at both ends of a channel which forms a problem of great
practical importance. Such conditions are usually introduced in a method of quad­
differences by some process of trial and error. On this account a method of cross­
differences or a characteristic method is often preferabie.

Cross-differences. Often we encounter a problem in which either Hor Q is a given
constant or a given function of t at each end of a channeI. In those cases a method of
cross-differences may be appropriate.

We neglect once more the velocity head v2 j2g and treat A as a constant and B
and W as constants or given functions of t. We expand H in the environment of
point 22. Then:

H 21 = H 22 + H x l 12 + t H xx l:2 + .
H 23 = H 22 - H x 123 +à H xx 12~ - •••••••••

Suppose that 112 = 123 or that 123 - 112 is small compared to 112 or 123 of the same order
as Hxx 112 is small compared to Hx ' Then

H 21 - H 23(407) H =-~--
x 112 + 123

is correct, but for terms of second and higher order. In the same way we find

(408) Q = Q32 - Q12 •

t 2Lt

By introducing the approximation I Q 121 Q3dor I Q221 Q22 the dynamical equation yields

M 2
(409) H 21 - H2.1 + iZ~ (Q32 - Q12) + W2 1Q121 Q32 = O.

where M 2 = M 12 + M 23 and W2 = W 12 + W23 •

In a similar way we apply the continuity equation to point 33:

B3
(410) Q32 - Q3J + 2([ (HJ3 - H 23) = O.

Here B 3 = B23 + B 3J •

Now suppose Q(t) is given in A and H(I) in F (fig. 3). We suppose moreover that
Q12' Qu, H 23 and H 25 are given as initial conditions or may be assumed as such.
Then we know H 2b H 23 and Q12 and compute Q32 by (409). In the same way we
deduce Q3J from H 23, H 25 and Qu. Next we know Q32' Q3J and H 23 and we may
compute Hu by (410) and furthermore H 45 •

Then we start anew from the values H 4b H 43 and Q32 in order to compute Q52

by applying the dynamical equation to the lozenge 32-41-52-43. Proceeding in this
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way we eompute alternately sets of Q values by (409) and sets of H values by (410).
The eomputation gives the vertieal tide in Band D and the horizontal tide in C and E.
When we want to know the other tides, supplementary eomputations are neeessary
for instanee with the aid of quad-differenees.

Onee the boundary and initial eonditions given or assumed, the eomputation
proeeeds without any trial and error. The influence of a boundary condition is then
introdueed step by step into the solution along the sides of the lozenges ("lines of
influenee"). This is decidedly an advantage over a method of quad-differenees, in
which a boundary value at some instant t r must be introdueed simultaneously in all
points of the grid with the abscissa tr

The above methad, in which the continuity and the dynamical equation are applied
alternately, can only be used if each boundary condition is either one in Hor one in Q.
This restrietion can be removed by applying both the continuity and the dynamical
equation in every lozenge. It is moreover necessary then to apply these equations in
the bordertriangles 16-25-36, 21-32-41 etc. Owing to the lack of symmetry in these
triangles, the second order terms cannot be made to cancel, so that second order
differences must be introdueed in order to maintain the standard of accuracy.

When v2/2g and the variations of A are no longer negligible, their computation
likewise requires the simultaneous application of bath equations in every lozenge.

The method of cross-differences has a certain appearance of affinity to the eharac­
teristic method (cf eh. 5), in particular when the section lengths and time intervals
are chosen such that the "lines of influence" coincide with the subcharacteristics. This
is not essential at all however and, except when B as well as M is constant, it is not
even practicabie. Let 23-S and 2l-S be two subcharacteristics. Then the values of H
and Q along the segment 21-23 define the solution in the triangle 23-S-21. Hence,
if point 32 lies within this triangle, we may compute the solution in 32 from the data
in 21 an 23. When 32 lies outside the triangle, the computation outreaches the propaga­
tion ofthe tidal motion 1). In that case phantom waves appear in the solution, mainly
with the period 46t, which tend to grow, in particular near slack water, because then
there is but little friction to damp them. The phantom waves remain sufficiently small
when the lozenges keep within the subcharacteristic triangles (cf Holsters [33]).

4, 2. Power series and iterative methods.

In order to compute storm tides in the Zuiderzee, the Lorentz Committee [12]
developed an integration method by power series. This method was extended to
maritime rivers by Dronkers [14] who later converted it into an iterative process
[21, 24].

We assume once more a division of intervals of tand sections of x (cf. fig. 3).

1) Physically the influenee of a boundary eondition proeeeds with the eharaeteristie velocity
of propagation. For that reason we prefer to retain the name "lines of influenee" for the subeharae­
teristies, and aeeordingly we prefer to eaU Holsters' method, a method of eross-differenees.
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Now consider the motion in the secHon AB at the instant t l' The section is supposed
to be so short that it is admissible to treat b, m, wand U in (211) and (212) as constants,
introducing for them the mean values in the section AB at the instant t l'

Power series methad. Let the origin for x be chosen at the pIace A and let Ho (t)
and Qo(t) be the functions Hand Q in A. Then we can expand Hand Q in the environ­
ment of the segment 15-16 (fig. 3) by the MacLaurin series:

(411)

(412)

(
OH) (02H)H(x, t) = Ho + x ~ + ! x2 ~ + .
ux x=o ux x=o

(
oQ) (02Q)Q (x, t) = Qo + x ~ + !x2 ~ + .
ux x=o ux x=o

When Ho and Qo are known, all the other coefficients can be deduced by means of
the differential equations. Then H (I, t 1), and Q(I, t1) i.e. Hand Q in B at the instant tb

are defined provided the series converge.
The convergence of the expansions in the form (411) and (412) is very difficult to

be ascertained, both theoretically and practically. This objection has been overcome
by approaching the problem somewhat differently by an iterative process.

Iterative method. We write (211) and (212) in the form

oQ oH oQ
(413) bx = - b bi + 2 bUQ Ji

oH oQ _ oH
(414) bx = -m bt -F WQ2 + 2 bUQ bi '

then substitute the approximations Q = Qo(t) and H = Ho(t) in the right hand
members, and integrate from 0 to x. This yields the first subsequent approximations:

. .
(415) Ql = Q0 - bH0 x + 2 bUQ0 Q 0 x. .
(416) Hl = Ho-mQox + wQ~x + 2bUQo Hox.

Here the points denote derivatives with respect to t.
The second subsequent approximations are found by substituting (415) and (416)

in the right hand members of (413) and (414) and integrating once more
.. .

(417) QII = Ql + ! bmQo x 2 ± bwQoQo x 2+ Qs(t, x)

(418) H II = Hl + ! bmHo x 2 ± bwQo Hox2 =f t b2wÎ-!; x 3 + H,(t, x).

Here Qs and Hs denote sets of terms of lower order of magnitude.
Continuation of the process yields QIlI and HIlI etc. Evidently the formulae

become more and more involved. As a rule the approximations QII and HII are
sufficient for practical computing. When it is necessary to compute QIIl and HIlI'
we must generaIly as weIl consider the variations of the coefficients b, m etc.
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Generally we have
x x

(419) Qn = Qc - b Jil/l- 1 dx + 2b U fQn-l Q/I-l dx

o
x

o
x x

o o o

These fun~tions are polynomials in x.
lt remains to be investigated whether the iterative process is convergent or not

for x <; I, i.e. whether the series
.,..

Q = Qo + 1:(Qk- Qk-l)
k~1

converge (Q = lim Q/!; H = lim H n).n'" .,.. /!". .,..

.,..
, H = Ho + 1:(Hk -- Hk-- 1)

k~1

Since the terms with U in (413) and (414) arc smal! with respect to the other terms
as a rule, we shallieave them out of consideration for the moment. Then it can be
proved by induction :

3(2k -1) 2k +1_2

(421) H 2k - H2k- 1 = 1: a2k,dt) xl Q2k - Q2k-l = 1: b2k ,1 (t) X I.

1=2k 1=2k
2k+1_3 3.2k- 1_2

H2k- 1 - H2k- 2 = 1: a2k-l,dt) x I; Q2k-l- Q2k-2 = 1: b2k -- 1,/(t) x I.

1=2k-1 1=2k-1

The proof of the convergence follows by a more detailed research of the p01ynomia1s
of (421).

The process is found to be convergent for a group of functions Qo and Ho' üwing
to the quadratic terms in the differential equations, this group is more restricted than
if the equations were linear.

In many tida1 prob1ems we may assume that all the derivatives of Qo (t) and Ho (t)
are finite with respect to t. In this case there is convergence for limited values of x,
depending on the coefficients of the differential equations. We renounce the detailed
treatment of this question (cf [24]).

The terms derived by iteration are the same as those appearing in the power series.
By their different grouping however, the convergence can more easily be proved.
The terms are moreover more easily interpreted physically as contributions to the
balance of quantities of water or to the ba1ance of forces and momentum. This facili­
tates the quantitative appreciation of the terms.

When Qaand Ha at the upperend ofasectionare known, wecancompute QbandHb
at the 10wer end, or inversily we compute Qa and Ha from Qb and Hb·
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Hence if we know Q and H at the inlet of an estuary or at the mouth of a river,
we can compute these quantities up the estuary or river from section to section as
far as the c10sed end or until the range is so small that further ca1culation serves no
purpose.

However in various practical applications we do not know Q (I) at the inlet.
We can then arrive at this Q by trial and error, checking by means of a boundary
condition at the landward extremity which is usually known.

Other applications will be discussed in the subsequent sections.
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4, 3. Computation of currents from vertical tides; single sections.

In general it is simpier to record water levels than currents. So the problem arises
to ca1culate the discharges and velocities in a section as a function of time when the
water levels at both ends are known. This can be performed by means of the formulae
of the preceding section.

We assume the Chézy coefficient C to be known. Let the section be so short (in the
Dutch practice usually sections of 10 km or Iess are considered) that the second
iteration (418) is sufficient. Putting for x the length I of the section, Hu becomes the
known vertical tide at one end whereas Ho is the known tide at the other end of the
section. Thus (418) becomes a nonlinear differential equation in Qo of the fiTst order.

Notwithstanding its nonlinear character it is very simple to determine Qo as a
function of time numerically, when we knowor may assume an initial condition for
Qo (cf. 2,3). We may do so by converting the derivatives with respect to I into quo­
tients of finite differences. Then we compute Qo from interval to interval starting
from Qo (1 1) at the instant I l' In practice, intervals of about a quarter of an hour
usually will do.

2
3

10

Q

-1

-2
Fig. 4. Computation of the discharge curve starting from different initial conditions.
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When the vertica1 tides Ho an Hl are periodic it can be shown that the differential
equation in Qo has one unique periodic solution. This solution is stabie and hence,
if we start from an arbitrary value Qo (tI)' the integral curve will approach the periodic
solution asymptotically with increasing time (cf fig. 4).

If we are so fortunate as to know the 10cal vertical tides along the estuary at
distances of about 10 km or less, we are able to check the schematization used. Then
we calculate the discharges at the beginning of each section by the above method.
These discharges however must also satisfy the equation of continuity (417). This
provides a check of the schematization of the estuary and of the Chézy coefficient.

4, 4. Computation of currents from vertical tides; combinations of sections.

The above method is not weIl applicable when we only know the vertical tides
at the ends of a channel with a length largely exceeding 10 km. Then we may consider
the following method:

Suppose the channel is so long that it should be divided into two sections. In each
of these sections we adopt mean values for m, band w as outlined in 4,2. We denote
by Q1> H] the discharge and head at the beginning of the first section, by Q]2' H l2
halfway the section, and so on as fig. 5 shows.

Hf Hft H2
Qf Qlt Q2
I

I

" / '"v

hl' mI , l+f. tI

Fig. 5. Combination of two sections.

Now we apply (416) to the centre of a section omitting the secondary terms
involving U, substitute x = - t / and x = t / and then deduce

(422) a) H2 = H] =f w]Q]; /]- m] Ql2/[ b) Ha = H2 =f w2 Q2; /2 -. m2 Q2a/2'

Moreover we may put

(423)

Now we put approximately. .. . .
Hl2 = t (H] + H2) = ! H] + t Ha

so that

. . .
H 2a = t H] + ! Ha ,

. .
Q2a = Q2 - t b2(H] + 3 Ha) /2 .

Substituting in (422) we find after some calculation:
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(424) Ha - Hl = =f (Wlll +- w212) Q; -(mil +- m212)Q2 +
=f t { wi~bd3 Hz + Ha) - w21;b2(Hl +- 3Ha) } Q2 +

.. ..
=f 6\ ( wll~b~(3Hl + HaJ2+-w21~b;(Hl + 3HaJ2} +

.... ....
- t { mll~bl(3Hr+- Ha) - m 21;b2(Hl+ 3Ha) }.

Thus we have derived a differential equation for Q2' whieh we may solve as treated
in 4,3. After ealculating Q 1 we determine

(425) Ql = Q2 + bl H l2 ll

as a first approximation of Ql'
Starting from Ql and Hl we eompute Q2 and H 2, and then Qa and Ha with the

aid of (417) and (418). Now Ha has to be identieal with the known funetion Ha,
but there will generally be deviations. Then we ean determine a closer approximation

for Ql by putting for Hl2 and H2a the functions eomputed from Ql and Hl' This
yields a formula analogous to (424) from whieh we determine Ql again.
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Fig. 6. Panama sea level canal. Computations by various methods.
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where

(426)

TIDAl COMPUTATIONS IN SHAllOW WATER

We can apply this method for relatively large channels. In the Dutch estuaries the
totallength may be up to 30 km.

In order to show an example of the preceding method, we have ca\culated the tidal
movement in an open unregulated Panama sea level canal using the schematization
of Lamoen [25] (cf 4, I). We have divided the canal in 4 sections and computed a first
approximation by the above method. Then refinements have been computed by
(417) and (418). Both solutions are represented in fig. 6.

4, 5. Application to the planning of the enclosure of a tidal river.

As stated in 1,1, tidal computations form a valuable support in the planning of
the enclosure of a tidal river. In order to illustrate this, we shall briefly discuss the
computations with regard to the enclosure of the Brielse Maas, which is represented
schematically in fig. 7.

~ M ~ ~ ~
Qo (), Q2 Qa Q4

dam dam ebb
I I 1 1 --

l' BeD l~fiOOd
,,'----~v~-----J/,,~---~~ --J/

A" h" m" W,. " A2 , h2 • m;, W2 , /2

Fig. 7. Scheme of river Brielsemaas.

Between A and B the river had to be closed by a dam, and likewise between D and
E. Cis almost halfway Band D. The sections BC and CD are each about 11 km long.
The vertical tides at A and E, Ho and H 4 are known. The distances A-B and D-E are
so small that we may put

Q0 = Q1 and Q3 = Q4'

As the construction of the dam between A and B progresses, the flow passes
through a narrowing gap. Between C and 0 the situation is simular. In the gap A-B
there is a loss of head

(+ for ebb)
(- for f1ood)

1) 1 ( 1 1\2 1)2 (1 1) 2

Wl = 2g Ag - Al) or Wl = 2g Ag - A~

in case of ebb or f100d respectively. Here Ag is the cross-sectional area of the gap,
A o that area above, and Al that below the gap, whereas 1)1 and '~2 are coefficients
of the gap.

Likewise

(427) Ha - H 4 = ± WaQ~

holds good for the gap between C and D.
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TIDAL COMPUTATIONS IN SHALLOW WATER

The basin of the Brielse Maas, represented by the sections BC and CD, is treated
in the way of 4,4. In (426) and (427) we substitute (425) and an analogous expression
for Q3' Hence we obtain three equations, (424) (426) and (427), by which we may
determine Q2, Hl and H 3·

After elimination of Hl and H 3 with the aid of (426) and (427) we get a nonlinear
differential equation for Q2 which may be solved in a similar manner as treated in
4,3 and 4,4.

The following questions concerning the closing of the two gaps were put:

I. Which gap has to be closed first?
2. Is it possible to narrow the gaps in coordination with each other in such a way

that the closing of one of the gaps would become easier?
3. Which are the values of the velocities in the gaps during the process of narrowing?

Both the maximum velocities during a tide, and the slack water conditions are
important from the engineering point of view.

The results of the tidal calculations showed that it was preferabIe to narrow first
the gap at the seaside. Then the velocities in the other gap (riverside) would decrease
because the penetration of the tide into the channel is obstructed. In fact the gap at
the riverside could be closed without difficulty. After that the gap at the seaside had
to be closed, which was effected by sinking a large pontoon at slack tide.

41

J



5. INTEGRATION ALONG CHARACTERISTICS

The principle of the characteristics and their bearing on the phenomenon of
propagation can be most clearly discussed in connection with linear equations without
resistance (5, I). Next the amendments to be made in order to deal with the resistance
are expounded (5,2). Furthermore the variability of the velocities of propagation is
dealt with (5,3). Finally shock wave conditions are considered (5,4).

5, I. Elementary theory of propagation.

We start from (209) and (210) where we consider band m as constants. In this
section we make moreover abstraction from the resistance:

oQ oH
(50 I) ~x + b bt = 0

oH oQ
(502) ox + m & = O.

It be observed that, according to the disregard of v2/2g presumed in deriving (209)
and (210), H may be interpreted arbitrarily as the water level or as the total head.

The tidal motion is mathematically described by Hand Q as functions of tand x.
This can be represented graphically by using a HQ-diagram in connection with a tx­
diagram (fig. 8).

pi

F

H

b
----"'---""""---'----'--- Q

G

a

Fig. 8. Characteristic construction diagrams.
a. Diagram of itineraries, b. Diagram of states of motion.

Let us consider the point ta , xa in the tx-diagram (A in fig. 8). This means that we
fix our attention to the pIace xa at the instant ta. Let Ha be the head and Qa the
discharge in this place at that instant. Then the point (Ha' Qa) in the HQ-diagram
(A' in fig. 8) representing the state of motion in xa at ta> is associated with the point
(ta' xa) in the tx-diagram (A).
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TIDAL COMPUTATIONS IN SHALLOW WATER

Any function F of Hand Q may be interpreted as a property of the state of
motion. If a definite value Fa of such a function Fis observed at the instant ta in a
place Xa, and shortly after at the instant tb in a slightly further place Xb' we shall say
that the property represented by F is propagated from xa to xb during the interval
ta to tb'

The further mathematical development of this idea consists in trying to deduce
from (SOl) and (502) one or more equations of the form

oF oF
bi + C OX = O.

oG oG
s -co~= 0,
ut uX

and b)(504)

For the elaboration we may refer to [28] eh 2. As a result of the analysis there appear
to be two such equations which we can find by adding t Zoco times (501) to t Co or
to - t Co times (502). The two functions which are propagated in the above sense are

(S03) a) F = tH + t ZoQ and b) G = tH - t ZoQ

satisfying the equations

oF oF
a) ot + CO OX = 0

where

(505) a) Co = I/Vbm b) Zo = 1/ Yo = Vm/b.

In a geometric point moving in the positive x-sense with the velocity dx/dt = Co,
we have

(506) dF = oF dt + oF dx = (OF + 9~ c ) dt,ot eh ot bx 0

which is zero by virtue of (S04a). Hence F preserves its value in the moving point.
This point, which we shall call a wave point, can be said to convey that particular value
of F. In a similar way a wave point moving in the negative sense with the velocity
dx/dt = - Co, conveys a particular value of G.

The functions F and G may be considered as new coordinates in the HQ plane.
Hence a state of motion is as weIl defined by F and Gas by Hand Q. We shall caU
F and G the characteristic wave components of the tidal motion. The values of these
components are conveyed by the wave points. Thus the component F is propagated
in the positive sense and the component G in the negative sense. The velocity of
propagation is Co or -Co.

The itineraries of the wave points are represented by straight lines in the tx­
diagram, called subcharacteristics, with slopes Co to 1 or -Co to 1. The HQ-points
associated with the points of a particular subcharacteristic, all correspond to the
same value of F or G, and hence are situated on straight hnes in the HQ-diagram,
called contra-subcharacteristics. When the slope of the subcharacteristic is Co to 1,
then by (503a) the slope of the associated contra-subcharacteristic is -Zo to 1
(compare S2 and C2 in fig. 8). When the slope ofthe former is -Co to 1, then by (S03b)
that of the latter is Zo tö 1 (S2 and C2 in fig. 8). A subcharacteristic and the associated
contra-subcharacteristic together will be referred to as a characteristic. If the solution
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TIDAL COMPUTATlONS IN SHALLOW WATER

H(t, X), Q(t, X) is represented by an integral surface in a HQtx-hyperspace, the charac­
teristics are curves on that surface and the subcharacteristics and contra-subcharac­
teristics are projections of the characteristics.

Let us consider a travelling wave invading a state of rest (fig. 9). The water surface
in rest having been adopted as zero level, we have H = 0 and Q = 0 and hence
F = 0 and G = 0 in the undisturbed region. Any wave point P moving with the wave
and conveying a particular value Fp of F, meets wave points coming out ofthe region
of rest and thence conveying the value G = O. So we have from (503a) and b)

(507) a) Hp = Fp and b) Hp = ZoQp

in the wave point P independent of t. This means firstly that there is a definite relation
(507-b) between Hand Qand secondly that the whole configuration of elevations and
depressions and the associated currents, displaces with the velocity Co of the wave
points in virtue of (504-a).

-------l.~ Co

--
.~-=="""-"T""==""-- XP F

I
I

QP=t:
I

/'/ /,,,, :;'l. //, ~ /

Fig. 9. Travelling (tidal) wave. Vertical dimensions greatly exaggerated compared to horizontal
dimensions. Wave height exaggerated compared to depth.

The elevations of the water level are attended by currents in the sense of the
propagation and the depressions by currents in the opposed sense. The points Rand
U where the originallevel is attained, also mark the places of slack water (cf (507b)).

It be observed that in a canal with a rectangular cross-section of width band
depth ao, we have m = lfgaob and hence

Co = Ygao ,

a well-known formula for the velocity of propagation of a travelling wave.
Apparently the travelling wave character of the water motion is associated with

the wave points moving with the velocity Co, which we shall call the active (manifest,
cf [28] eh. 3, sect. 11) wave points. The wave points moving in the other sense and
conveying the rest vaIue G = 0 are inactive (latent).

In the state of rest all wave points are inactive. This does not imply however that
those wave points are at rest themseIves.

Now we consider a wave motion in which the wave points moving in both senses
are a.::tive. In order to define the line of thought, suppose we know the state of motion
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in a place Xl at an instant t 1 and likewise in X 2 at t2• So we consider the points Pand Q
in fig. Sa. Let P' and Q' in the HQ-diagram represent the associated states of motion.
Now we consider a wave point moving with the velocity Co in the positive sense,
passing by the place x, at the instant t 1 on its way to the place x2• The itinerary of
this wave point is the sub-characteristic Sl' In the same way S2 is the itinerary of an
other wave point moving with the velocity -Co in the negative sense and passing by
the place X 2 at the instant t2 •

In the tx-diagram we see that the two wave points meet in a place X a at the
instant t 3' This event is represented by the intersection S of the subcharacteristics SI

and S2' The associated state of motion is easily constructed in the HQ-diagram. For the
H Q-point S' of this state of motion must lie as well on the contra-subcharacteristic Cl

associated with the first wave point, as on the contra-subcharacteristic C2 associated
with the second wave point.

Now suppose the head H in the place X 4 is controlled by a boundary condition.
This place for instance is the inlet of the estuary. Then the head H 4 at the instant t 4 ,

at which the wave point first considered above arrives in the place x 4, is given. The
tx-point R represents the arrival of the wave point. The HQ-point R' representing
the associated state of motion, must have the ordinate H 4• The point R' must more­
over lie on the contra-subcharacteristic Cl' These two conditions define R' entirely.

If the boundary condition controls Q or a definite function of Hand Q, the state
of motion point R' is defined in a similar way.

Let now the head in the place X 4 be suddenly varied at the very instant of the
arrival of the wave point so that H becomes H 4 + oH4• The HQ-point representing
the state of motion immediately after the variation of head, cannot but lie on Cl as
well as R'. This means that the variation of head oH4 is attented by a variation oQ 4 =

-oH4/Z0 (cf (503a)).
Any sudden variation of head imposed on the canal (x < x 4) provokes a propor­

tional reaction in the discharge and inversely. The increase of head per unit decrease
of discharge, Zo, is calied the characteristic coefficient of wave impediment. The
reciprocal Y o is called the wave admission.

In the same way it is argued that sudden variations imposed in the other sense
(say to a canal with x > x 4) provoke likewise reactions such that oH = ZoöQ.

The above constructions illustrate some of the main procedures applied in the
characteristic approach of tidal problems. Other such procedures serve to deal with
reflections at widenings or narrowings of a channel, at junctions of channels etc.

Before we set out to describe more systematically how a tidal computation by
characteristics is performed, we must first pay attention to the resistance in view of
its practical importance.

5, 2. Influence of frictional resistance on propagation.

We add again t Zoco times (209) to t Co or - t Co times (210) so that instead
of (504):
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öF oF oG oG
(SOS) a) & + Co Ox + ~ cow I Q I Q = 0; b) bi - Co h - t cow I Q I Q = 0,

where F and G are still defined by (503). The term w IQ! Qmay be eonsidered as
a funetion of F and G. If w is supposed constant, then by (503)

w IQ IQ = IV r% IF - G I(F - G)

formulates the resistance as function of F and G.
The function F in a wave point moving with the velocity Co now no longer preserves

its value. Substitution from (SOS-a) in (506) yields

(509) dF = -t cow I Q I Q dl.

Hence F decreases gradually if Q is positive and increases if Q is negative. Similarly
G in a wave point moving with the velocity -Co increases if Q is positive and decreases
if Q is negative.

By the above mathematical arrangement it is possible to explain the behaviour
of tidal and similar waves in terms of propagation and attenuation associated there­
with. The following may illustrate this:

Consider onee more the wave of fig. 9. In the region of rest we still have F = 0
and G = O. Now a wave point emerging from that region to meet the wave, eonveys
the value G = 0 until it encouters the foot F of the wave. Then it enters a region where
Q > O. Henee the value of G will begin to inerease and G beeomes positive. So the
eneountering wave point is aetivated. Since generally by virute of (503-b)

(510) ZoQ = H-2G,

the eurrents will be weaker than if there were no resistanee.
By eonsequenee of (510) the plaee of slaek water will be found at a positive eleva­

tion H = 2G;> 0, say in S. At this pIace, G in the reeeding wave point reaehes its
maximum value and G will begin to deerease behind S.

The strongest eurrents are by virtue of (510) found where
öH oG
Öx = 2 ox'

Sinee oGjox is negative between F and S, the place searehed for must have oHjöx
negative as weIl. Henee the maximum flow no longer eoineides with the top T, but
with a more forward point Q.

The assumption of a region of rest ahead of the wave is not essential for the
conclusions, although for other assumptions the line of argument is slightly more
complicated. Hence it is explained why in a sine wave subject to resistanee, the
horizontal tide has a phase lead with respect to the vertical tide (cf 3,1).

When the line of thought is followed up further it ean be explained that the
displacement of the top of a travelling wave lags behind the wave point, so that the
phase velocity appears to be less than Co .

Now eonsider onee more the estuary AF to which fig. 3 refers. The vertieal tide H
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is supposed to be known as function of lat the in1et F and Q is known at the end A.
Moreover we suppose that Hand Q in the whoIe estuary at the instant lo are known
as initial conditions or may be assumed as such.

We divide the estuary into a number of sections of equal time of propagation :

T o ~= I/co = viBM.

Let ABCDEF in fig. 3 represent such a division. Moreover the interval/\l ofthe time
division is put equal to "0' Then the sides of the lozenges are subcharacteristics.

The computation by characteristics now proceeds as fol1ows: From the states
of motion associated with the lx-points 12 and 14 we deduce the state of motion
associated with 23. Likewise we proceed from 14 and 16 to 25. From 25 we proceed
to 36 and define H there with the aid of the given value of Q. Then we go from 12 to 21
and use the boundary condition in F. Next we proceed from 21 and 23 to 32 and from
23 and 25 to 34. Then we go to 41 and so on. The order in which the points are treated
might be chosen somewhat differently.

If there were no or a negligible resistance the procedures represented in fig. 8
might be used. As the resistance in tidal motions is quite appreciable as a rule, we
must modify the constructions as will be discussed below.

Let P' in fig. lOa represent the state of motion associated with the lx-point 43 in
fig. 3 and let likewise Q' correspond to 41. The state of motion associated with 52
and represented by the HQ-point S', must be determined by constructing the contra­
subcharacteristics associated with 43-52 and 41-52.

Consider the wave point of which 43-52 represents the itinerary. It encounters
series of states of motion beginning with that represented by P' and ending with that
represented by S'. The factor I Q I Q on its journey varies from I Qp I Qp to I Qs I Qs·

Let [QTQ denote theaverage of[ Q IQduringthisjourney: Then we deducefrom (509)

(511) Fs - Fp = - t cowTQ1-Q(ll- lo) = -~ W23TQ[Q.
Here W23 is the resistance of the section DE. For Co (t 1 - lo) is equal to the length
123 of that section and W23 = w123•

Substituting from (503) in (511) yields
(512) a) (Hs-Hp + W23 1-Q-[-Q)+Zo(Qs-Qp) =0.

This means that the point S' with the coordinates Hs and Qs must lie on a line k
sloping at Zo to 1 and through a point D which lies at the distance W 23 TQT(Xbelow
P'. This line can be constructed when we make an estimation of I-{TI-Q-:-

In a similar manner we have

(512) b) (Hs - HQ - W12 ! Q I Q)-Zo(Qs- QQ) = 0

and we can construct a line m in connection with the wave point of which 41-52 is
the itinerary. The point S' is then found at the intersection of k and m.

The contra-subcharacteristics are not the lines k and m, but the lines P' S' and
Q' S'.
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In fig. Wa we have also represented the construction for the state of motion point
R' associated with 6I (fig. 3). Here the datum H R is introduced.

The estimation of I Q I Q can be checked after the construction of S', and if
necessary the construction is repeated with a new estimate. It appears, however, that
these estimations often require a relatively great amount of trial and error labour.
In view of its practical importance we go somewhat deeper into the question:

We approximate the variation of Qalong the subcharacteristic 43-52 by

Q = Qp + (Qs - Qp) x i 123 ,

for a moment adopting the place D as origin for x. Then, if Qp and Qs have equal
signs, /23

(513) S= TÓTQ= I-
L rl Q I Q = ::U! Q;+ ! QpQs+! Qi)·
23.

o

This is a function of Qp which is known and Qs which is unknown and ought to b~

estimated. Unfortunately S is very sensitive to errors in the estimation of Qs and
this is the root of the difficulties expounded above.

In order to substantially eliminate this drawback, we rewrite (513) as follows:

S = IQp IQp+ Qm(Qs-Qp) where Qm = I; Qp + t Qs I·
The estimation of Qs is now only used to determine the factor Qm which is relatively
little sensitive. Then (512) may be reduced to

(514) (Hs - Hp + H rp) + Z(Qs- Qp) = 0,

where Hrp = W23 IQp I Qp and Z = Zo + W23 Qm .

Since Qm is determined by estimation, (514) constitutes a linear equation in Qs. Jt
is constructively interpreted in the way described already; the distance P'D becomes
H rpand the slope of k becomes Z to I.

When Qp and Qs have different signs, we may introduce the approximating
formulae

where we make use of an estimation for Qs, and further proceed as described above.
The justification of this procedure would demand a disproportionate space and hence
is omitted here.

A slightly different method with fixed subcharacteristics was applied by Lamoen
to the Panama canal [25]. Thc canal was divided into six sections. The results of
Lamoen's computation are represented in fig. 6.
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Fig. 10. a. Construction to account for resistance. b. Construction to account for variations
of velocities of propagation.

5, 3. Exact computation by variabie velocities of propagation.

We apply the characteristic transformation (cf [2S] Ch 2) to the exact equations
(207) and (20S). This means that we should add Z'f times (207) to (20S) where Z~'

is a factor' to be chosen in such a way that we arrive at equations of the form

oH I oH -lOQ 1 oQ]
ox + C± IJl + IV I Q I Q = Z'f ox + c± biJ'

Elaboration yields

(516) a) c+ = v + Co
1/ 1 + b b'" bs .-~ and b) c- = v - Co 1 I-+

b=- b, .?
~ s Ve b v~

(517) a) Z+ = ZoV~~-bb~b,. ~ and b) Z- = -Zo V~~-b--~~-.~;.

Here Co stands for I/V bm and Zo forVm/b as in (505); however, now mand band
hence Co and Zo are not constant but depending on the state of motion, i.e. on Hand
Q. Furthermore v denotes the velocity of flow v= Q/A and Ve is the critical velocity of
flow defined by

/~,- /-, -
(SIS) ve = \i gAlbs = Co \i bibs'

to which we return further below.
It follows from (SIS) that in a wave point moving with the velocity dx / dt = c+,

the states of motion.satisfy the differential equation

(519-a) dH + w I Q I Q dx = Z-dQ [if dx = c+ dt].

Likewise

(519-b) dH + w IQ IQ dx = Z+ dQ [if dx = c- dt]

holds good in a wave point moving with the velocity C-. We might bring (519-a)
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or b) in a form like (509) by introducing the variables F and G, defined as functions
of Hand Q by

or

However, the solution of these equations, in which Z+ and Z- are functions of Hand
Q and moreover of x, cannot be generally formulated. It moreover serves no practical
purpose since we can as well operate directly with (519 a) and b).

The velocity of propagation c+ or c- can be either positive or negative depending
on the velocity of flow. The critical value of the velocity of flow is ve defined by (518).
When -- Vc < v < Ve , the flow is suberitieal (flowing water) and c+ > 0 and e- < O.
When v > ve or v < - v" the flow is supercritical (running or shooting water)
and c+ > c- > 0 or c- < e+ < O. The distinction is ofgreat practical consequence
for the influence of boundary conditions on the flow. We shall not go further into this
question and confine ourselves to subcritical flow (cf [28] eh 3, sect 212).

Tidal motions usually are largely subcritical, i.e. v is small compared to ve • We may
then be justified in approximating by

(520) a) e± = v ± Co and b) Z± = ± Zo

and by determining co, Zo and Was functions of H by neglecting v2/2g.

We now consider again the estuary AF mentioned before. A division into sections
of approximately equal time of propagation is established. Furthermore suppose for
the moment that the tidal curves are smooth continuous functions of time. We can
then perform the computation according to a grid as shown by fig. 3, in which the
Iozenges keep within the subcharacteristic triangles. We shall not describe this system­
atically but only give an illustrative example:

Suppose the computation has been completed as far as the instant tb so that we
know the states of motion associated with the tx-points 21, 23, 32, 41, 43 etc. Now
we proceed to 52 by considering the two wave points meeting each other in the place
E at the instant t 5 (tx-point S in fig. lOb). Let ta be the instant at which the descending
wave point passed by D (tx-point P in fig. lOb) and tb the instant at which the ascend­
ing wave point Ieft F (tx-point Q in fig. lOb).

The subcharacteristic representing the itinerary of the descending wave point
goes through Pand S. The straight line PS which is a chord of this subcharacteristic,
is constructed as follows:

Let (Hp, Qp) and (Hs , Qs) be the states of motion associated with Pand S. Then
we put

Qg=tQp+tQs and Hg=tHp+tHs

and derive ci = Qg / A + Co (Hg) from them as an approximation for the average
velocity of the descending wave point. This will be sufficiently accurate provided the
sections of the estuary are not too great. Now we estimate Hp, Qp, Hs and Qs,
compute ei, and construct P by drawing PS through S by the slope ci to 1. Then the
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estimations of Hp and Qp can be checked by interpolating between the states of
motion in D at the instants t2 and t4 which were supposed to be known. The check of
Hs and Qs follows later.

In a similar way we construct SQ and interpolate for H Q and QQ. Then the HQ­
points pi and Q' associated with Pand Q are known and Sf is constructed as indicated
in fig. 10a. This provides the check for the estimation of H s and Qs. If necessary the
whole set of constructions is repeated.

The interpolations mentioned may be performed graphically by two auxiliary
diagrams, an Ht- and a Qt-diagram.

We conc1ude this section by a few remarks :
The approximations and estimations introduced above do not form an essential

feature of the method. They usually meet the requirements in the Dutch practice,
where we have channels of some 5 or 10 m depth and where we can operate with
sections of 5 to 10 km with times of propagation of some 10 or IS min. In different
situations modifications in the performance should be considered. The method could
be applied practically unmodified to the Panama sea level eanal which was divided
into 4 sections each with a time ofpropagation of about 20 min. The results are shown
in fig. 6.

A fixed grid like that of fig. 3 can be used profitably when the tidal motion shows
a gradual trend. When there are acute bends in the tidal curves, e.g. in case of manipu­
lations with locks etc., the fixed grid must be abandoned and the characteristics
marking the propagation of the sharp details should be followed uninterruptedly.

Instead of graphical constructions, a numerical procedure may be used. This may
be preferabie when computing machines are used. From the engineer's point ofview
the graphical constructions have the advantage of helping to visualize the procedure.

5, 4. Jumps and bores.

The bore is a tidal phenomenon observed in rather shallow estuaries and rivers
with a great tidal range, which occurs in particular when the estuary or river is funnel­
shaped. The bore comes into being when higher parts of the rising tide front of the
penetrating tidal wave tend to overtake lower parts. This is put into evidenee by the
tx -diagram where the concurrent subcharacteristics of the wave points in the rising
tide front are intersecting.

The bore is a hydrauI ic jump which is not fixed in pIace but travelling up the river.
Similar mobile jumps may arise from too abrupt operations with locks etc.

Although in these mobile jumps the vertical aceelerations are of essential influence,
it is still possible to compute a tide with a bore or other jump as a long wave, provided
we account for the jump as a discontinuity in the long wave 10calised in a definite
moving point comparable to a wave point. Doing so is justified since the length of
the bore is as a rule very small as compared to the length of the tidal wave.

A rigorous treatment of the mobile jump by rather simple formulae ean be given
if the cross-section of the channel is rectangular (cf [28] eh 12 sect 31). The formulae
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for an arbitrary cross-section with a storing width b different from the width bs of
the conveying streambed, are becoming unworkably involved. The following approxi­
mate formulae, however, may be used if the height of the jump is not too great, say
less than half the depth :

Let hl be the lower level ahead and h2 the higher level in the rear of ajump, which
travels up a river in the negative sense of x. Let Hl> Ql> Vl> cab Zal etc. be associated
with hl and H 2 etc. with h2• Then the velocity c of the jump is approximated by

(521) c = H C 01 - v1) + H C O2 - v2 ),

and between the states of motion separated by the jump, a relation approximated by

(522)

exists.

The jump moves faster than the concurrent wave points ahead, but slower than
the concurrent wave points in the rear. So both kinds of wave points meet the jump
and merge into it. Considered by an observer moving with the jump, the flow in the
low level region appears as supercritical and that in the high level region as subcritical.

The jump is progressive, i.e. moving toward the low level region, if c > 0. Such
are the jumps in tidal regions as a rule. When c < 0, the jump would be regressive.
We have to deal with the well-known stationary jump if c = 0.
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Fig. 11. Canstructions to account [or a jump (bare) in a tide.
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In order to demonstrate how a jump is accounted for in a tidal computation by
characteristics, let fig. 11 represent part of such a computation. Suppose the jump at
the instant of passing by the place C (lx-points S) has been determined. This is repre­
sented by the discontinuities SlS2 in the Ht -diagram and the Qt -diagram. We set
out to determine the jump as it passes by the pIace B. To that purpose we consider
three wave points, all meeting the jump in B. They are: a concurrent wave point
running ahead (itinerary RP), a concurrent wave point coming in the rear (itinerary
TP), and a wave point encountering the jump (itinerary QP).

First we compute the velocity c of the jump according to (521), using estimations
where necessary, and we construct the tx -point P by drawing the line i through S
by the slope c to 1.

Next the state of motion (HQ-point P1) just in front of the jump when it reaches
B, is determined by considering the concurrent wave point ahead and the wave point
coming from A. Then, according to (522) we draw a line m through the HQ-point P1

by the slope ! (ZOl + Z02) to 1. This line together with the construction associated
with the wave point following the jump, defines the HQ -point P2 representing the
state of motion just in the rear of the jump when it reaches B.
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6, 1. Comparative appreciation of computation methods.

As the rather great variety of the computation methods presented in this paper
may appear somewhat bewildering, we shall now endeavour to give a comparitive
appreciation.

It is dear that, if there were a simply formulated exact solution of the mathematical
equations ofthe tidal motion, there would be no need for any other solution. The tidal
problems however are so intricate that such a solution is not possible and so we must
accept the existence of various methods approaching the problem in different ways.

From the point of view of applicability we have to distinguish between approxi­
mate and exact methods. By an exact method we understand a method by which the
solution of the mathematical problem can be determined to any desired degree of
accuracy. This means that the accuracy which can be obtained practically is limited
only by the accuracy of the observational data from whieh the computation starts.

The improvement of the accuracy generally goes at the cost of more labour. It
depends on the purpose pursued how far one should go. For an explorative investiga­
tion approximate computations generally will do. A more detailed investigation
requires greater accuracy and then it depends for a good deal on the nature of the
problem which method is the most appropriate.

For the execution of the computation it makes a great differenee whether trial and
error procedures have been accepted in the method, or the computation proceeds
straight forward. Whereas a straight forward procedure can be entrusted to a relatively
unexperienced computer, a trial and error procedure can only be efficient in the hands
of a computer with great experience.

We shall now first diseuss the methods more in detail and then condude by consid­
ering the use of computing machines.

Harmonie methods. The single-harmonic method in many cases reproduces very
satisfaetorily the fundamental of a periodic tide. The linearization of the resistance
which has to be based on an estimation of the discharges, can be improved by succes­
sive approximations. An experienced computer often can make a fair estimate at onee.
Further the method is a straight forward procedure demanding relatively little labour.
It is very appropriate for rapid exploration.

The sine approximation of a tide is not always aeeeptabie. The tidal flow in parti­
cular may deviate appreciably from the sine trend. Then one mayadopt a procedure
of successive approximations, sueh that every approximation is extended to one more
higher harmonie than the preceding approximation. The first steps in this procedure
generally improve the accuraey, but the further steps give lesser improvements
although the neeessary labour inereases. lt is even dubious if the whole procedure is
convergent at all. Praetieally it is usually not economie to go beyond the seeond
harmonie. This double-harmonie method is still approximate.

The application of a harmonie method to a eomplicated network of channels
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necessitates a special analysis to deal with the connections between the channels, which
may demand an appreciable amount of labour in excess to the computations of the
separate channels. The network analysis is a straight forward procedure (cf [28] eh 4,
sect 3).

The harmonie methods are particularly weIl suited to deal with periodic tides.
This restrietion is not necessary in principle. For firstly we may treat nonperiodic
functions by Fourier integrals, but the practical difficulties then encountered are in
fact prohibitive. Secondly it has been endeavoured to treat nonperiodic motions, in
particular storm tides by suitable approximate functions which are readily integrable.
Lorentz [12] tried to work on the assumption of periodically occurring storm surges,
Mazure [17] put forward the approximation by an exponentially exploding sine
function, and we might also try sums of real exponential functions. All these artifices
can not lead but to approximate methods because an improvement of the accuracy
along these lines requires excessively much labour. For accurate computations of
nonperiodic motions we may therefore exclude the harmonie methods.

Direct methods. Among the methods of quad-differences, power series and itera­
tion, the latter is the most refined. It lends itself very weIl for the numerical analysis of
observed tidal motions, which forms the indispensible check of the schematization
(cf 2, 3). Therefore the iterative method is in particular efficient in estuaries which
are hard to schematize.

Prediction by one of the above methods requires the simultaneous solution of a
number of nonlinear equations. In systems of a few sections this can still be done in a
straight forward manner. In greater systems one must accept a trial and error proce­
dure. In networks of simple structure this is still feasible, but in complicated networks
the trial and error labour rapidly becomes prohibitive.

Thc method of cross-differences is substantially a straight forward procedure. In
Holsters' original form it is an approximate method, reproducing more details than
a single-harmonie method but also requiring more labour. For explorative computa­
tions it may be appropriate. As soon as the method has to be refined, the labour
involved increases rather rapidly.

Characteristic methods. The most profitable simplification in this type of method,
viz the neglect of the resistance, is seldom admissable in tidal problems. Computing
the resistance demandes rather much labour. Therefore the characteristic methods
lend themselves not so much for explorative as for detailed investigations.

In comparison to the iterative method, an exact computation along characteristics
usually demands more labour when the tidal motion considered is an observed tide
or not too much deviating from such tides, and the tidal system is not a too complicat­
ed network. One of the advantages of the characteristic method however, lies in the
straight forward procedure which enables us to predict tidal motions in complicated
networks with an amount of labour roughly proportional to the extent of the system.

Characteristic methods are particularly weIl suited to deal with waves of finite
extent such as produced by locks, dam failures, etc.
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Computing machines. The great amount of computing labour necessary to obtain
accurate results on a tidal problem, asks for considering the use of a computing
machine, in particular of a rapid electronic computer. The efficiency of such a machine
depends largelyon the possibility of arranging the computation in the form of a pro
gramme according to which the machine can work on uninterruptedly. Tidal com­
putations howevcr lend themselves to this only partly.

According to Dutch experience a considerable part of the labour of a tidal compu­
tation has to be devoted to finding the most appropriate schematization of the tidal
system. Here much depends on the judgment of the computer and for that reason a
programme can not be well given. When a schooled computing team has been fornled
to deal with this preliminary work, it can also deal with the proper predicting computa­
tions. Hence the usc of a programme computing machine has only come into con­
sideration in the Netherlands since very recently the task of the tidal hydraulicians
was increased considerably.

The use of a computing machine can hardly be expected to be economie for
approximate computations. Ta set up a programme, a straight forward procedure is
moreover requisite. Hence the methods of characteristics and cross-differences are
the most promising in this way of approach.

6, 2. Comparative discussion of computations and model research.

Model research and computation methads both pretend to yield solutions of
tidal problems. A comparison therefore should not be omitted.

There are mainly two types of modeIs: hydrauIie models and electric analogues,
which we describe briefly:

Hydraulic model. Geometrically true reduced scale models of extensive tidal sys­
tems should be made very large in order to observe certain limits to the scale reduc­
tion, firstly because the Reynolds' number in the model should be sufficiently great
and secondly in view of the accuracy of measuring the vertical tide. As both conditions
apply substantially to the vertical scale, models have been adopted in which the
geometrical similarity is no longer strictly observed (distorted models). Such models
are necessarily more or less schema1ized in a degree depending on the rate of dis tor­
tion, and a true representation of the local flow patterns is no longer assured. Also
the distribution of velocity in a cross-section is affected, but it can be demonstrated
that the total discharges are truly represented provided the resistance is increased
in an appropriate manner (exaggerated roughness). In fact this ought to be checked
section by section.

A hydraulic model visualizes the water motion very clearly and directly which may
be a great help for the engineer. As a disadvantage of hydraulic models may be notcd
that it is often difficult (partly because of the exaggerated roughncss) to measure the
variabIe discharges.

Electric model. On the basis of the analogy of electric and hydraulic systems [35]
it is in principle possible to make an electric analogue of a tidal system [26]. Between
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the principle and the practical execution there is a long way. The model is made
section-wise sa that each model section represents a corresponding channel section
in such a way that the total storage, inertance and resistance are truly represented.
The internal mechanism in the model section offers no analogy with the channel
section. The electric model therefore only represents truly the total discharges, which
means that it is a schematic model. The electric currents analogous to these dis­
charges can be measured as accurately in principle as the potentials representing the
heads.

An electric model does not visualize the tidal motion as a hydrauiic model does.
It offers great possibilities however to produce very rapidly visual records of a great
variety of tidal diagrams.

The choice between computations and models may be governed by the following
considerations :

I. Typical advantages. Models offer rapid visualization possibilities. On the other
hand computations enable us to penetrate more deeply into the physical mechanism
of the motion, thus improving the insight. This is in particular true for computations
with graphs and slide rules, and in a much lesser degree for computations with
programme computing machines.

It depends partlyon the nature of a tidal problem, whether a model or computa­
tions will be most appropriate, and often bath means may profitably be applied in
cooperation.

2. Availibility. Not always the facilities for bath computing and model research
are at hand. Model research requires a weil equipped laboratory and computations
require trained computers.

3. Accuracy. The accuracy of bath models and computations is limited by the
errors of many preliminary data, such as the Chézy coefficient. Also computations
as weil as distorted hydraulic and electric models are to a certain extent dependent
on schematization. A generally valid comparison as to the degree of the accuracy
between the three seems hardly possible as the means by which it can be tried to
reduce the deviations from nature are not identical.

In hydraulic models both the effects of schematization and the measuring errors
can be decreased by the use of larger models. Here the economy becomes a very
important argument (v. below).

In an electric model the accuracy depends on the schematization and partlyon
the veracity of the representation of hydraulic properties (such as the quadratic
resistance) by electric elements. Whereas the farmer can be improved rather easily
by increasing the number of sections by which the schematization is set up, the latter
can only be improved as far as the electric technique admits.

The accuracy of a computation can be improved by refining the schematization
and, if we consider exact methods, by proceeding to a further approximation.
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4. Economy. There is a rather great difference between models and computations
in the ratio of variabie to fixed costs. The building of a model is a rather expensive
affair. Once the model built however, it is relatively easy to deal with a great variety
of problems in the same tidal system. The preparations for a computation (schema­
tization, checking, etc.) likewise take much labour, although relatively less than in
case of a model, whereas the investigation of a number of problems takes relatively
more labour than in a model.

In the Netherlands both types of models as weU as several of the methods of
computation treated in the preceding chapters, play a useful part in the solution ofthc
manifold problems with which the tides confront us.

Postscript

When the preceding paper was conceived, the possibilities offered by modern com­
putation techniques, digital or analogous, had only been explored provisionally. In
the four years elapsed since, considerable progress has been made.

Digital computing is now being done by a method based on a quad network, in
which the integrations are performed along characteristics, which are fit into the quad
scheme by interpolations. The quad scheme is preferred to a staggered (cross) scheme,
because in the staggered net the administrative part of the programme governing the
procession through the net, becomes much more complicated than in case of a quad
net. The integration along the characteristics has the advantage of easy adaptation to
any type of terminal conditions.

For dealing with the mass of problems in the Delta region, a new electric analogue
computer is now being constructed. This analogue will largely supersede the e1ec­
tronie analogue which has been in operation since 1953. The new computer is capablc
of simulating the equations (201) and (203) for arbitrary cross-sections. All types of
boundary conditions can be introduced.

The accuracy of the analogue is checked by means of digitaJ computations.

november 1958
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REPORT ON
HYDROSTATIC LEVELLING

ACROSS
THE WESTERSCHELDE

A. WAALEWIJN')

SUMMARY

In 1952 the Surveying Department of "Rijkswaterstaat" carried out a hydrostatic levelling across the
"Westerschelde", using an underwater gas-pipe of 10 cm diameter and a length of more than 4 km.
Great difficulties had to be overcome in filling the pipe completely, because a large air-bubble formed
in the middle ofthe nearly W-shaped longitudinal profile of the pipe. Finally this air-bubble could be
removed by fitting taps and moving the water mass by means of a big pump. The observations were
carried out from dec. 16 to dec. 24, 1952. The water level in the pipe ends was measured by means of
automatic water-gauges recording on scale 1: I.
Microbarometers were used in mea~uring the atmospheric pressure at both ends of the pipe. 1t
appeared, however, that these observations were useless; therefore the correction for difference in
atmospheric pressure had to be obtained from data of the adjacent meteorological stations.
Bottom-temperatures in the Westerschelde could be measured only once. The results of this measure­
ment were such that no corrections for difference in density were necessary.
The standard deviation of a single observation of the (carrected) height difference was 1.1 mmo The
average re~ult of the hydrostatic levelling has a standard deviation of 0.2 mmo By this levelling a 120
km long circuit from Zuid-Beveland via Woensdrecht and Antwerp to Zeeuws-Vlaanderen was closed.
The misclosure of this circuit was 0.3 mmo Further the report gives the results of some experiments:
The swinging of the water mass after disturbance of balance, the influence of low tide and high tide on
the capacity of the pipe and a non-stop series of microbarometer-readings.

SOMMAIRE

En 1952 Ie Service Topométrique du «Rijkswaterstaat» a exécuté un nivellement hydrostatique à
travers Ie Westerschelde, en utilisant un déversoir à gaz avec une longueur de plus de 4 km et un dia­
mètre de JO cm.
Le remplissage du déversoir avec de I'eau offrait de grandes difficultés, parce que Ie profil en long du
tube était en forme de W, de sorte qu'une grande bulle d'air se forma au milieu du tube. Cette bulle
d'air fut expulsée par Ie montage d'un robinet et Ie mouvement de la masse d'eau au moyen d'une
pompe.
La différence d'altitude des deux stations séparés par Ie Wcsterschelde fut observée du 16 décembre
jusqu'au 24 décembre 1952. Le niveau d'eau dans les extrémités du tube fut mesuré par un marégraph
enrégistrant à l'échelle I: I.
La pression atmosphérique des deux stations fut me~urée avec des microbaromètres.
Ces observations se révélèrcnt inutilisables; c'est pourquoi la correct ion pour la pression atmosphé­
rique fut calculée à l'aide des données des stations météorologiques circonvoisins.
Les températures au fond du Westerschelde ne pouraient être mesurées qu'une seule fois. Les résultats
de ces observations étaient tels qu'aucune correction pour de~ différences de densité paraissait néces­
saire.
L'erreur moyenne d'une seule ob~ervation de la différence d'altitude, corrigée pour la pression atmos­
phérique se trouve 1.1 mmo L'erreur moyenne de la moyenne de toutes les observations est 0.2 mmo
Ce nivellement hydrostatique ferme une polygone de 120 km avec une erreur de fermeture de 0.3 mmo
Le rapport danne aussi les résultats de quelques expériments: I'oscillation de la masse d'eau après
perturbation de I'équilibre; une série d'observations simultanées des microbaromètres avec des inter­
valles de I minute; l'influence des marées du Westerschelde ~ur la capacité du tube.

1) Chief Engineer, Surveying Department, Netherlands Rijkswaterstaat
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1. INTRODUCTION

1, 1. Motive of the report.

There are three means that can be employed to increase the accuracy with which the
N.A. P. (Amsterdam ordnance datum) is fixed at any given point in the Netherlands:
the application of specific methods of measuring by which various errors can be
avoided or eliminated, observations made by well-qualified and experienced ob­
servers with very good instruments, and the measuring of c10sed circuits so that a
weil coordinated network of measurements is achieved.

Fig. I presents the net of the second Dutch geodetic levelling, showing that in the
south-western part due to its deltaic character no circuits have been measured. Preci­
se1y in this district the coordination of the zeropoints of the tide-gauges is very
important because the local movements of the water must be known here exactly
for the preparation and execution of the Delta Works. Especially the accuracy of the
tidal calculations before and during the enc10sures of the estuaries depends largely
upon very accurate heights of the zero-point of gauges.

The lack of direct connections across the estuaries, makes the mutual accuracy of
the heights on either side of each stream less than it could be if those estuaries could
be crossed. The measurements across the estuaries are called "river-crossings".

The linking-up of the levellings on the Wadden-Islands in the nothern part of the
country with those on the mainland presents similar problems; the difficulties to be
surmounted are even greater. But no c10sings of sea-entrances are planned here for
the moment.

1, 2. Various river-crossings.

The measurement of river-crossings is the most difficult task in the execution of
precise levelling. The water surface in the estuaries is not a level surface, because of
tidal movements, windinfluences, waves and differences in density, and therefore can­
not be used.

In the Netherlands large rivers and even estuaries were crossed with the normal
optical method of reciprocallevelling, even though it be with special precautions.

The most important errors which occur with the optical method are due to:

the curvature of the earth,
atmospheric refraction,
maladjustment of the instrument.

Atmospheric refraction is above all a source of errors that are difficult to eliminate
whereas also alocal discrepancy in the curvature of the geoïd may cause a systematic
error which cannot be eliminated.
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Some examples of optical river-crossings in the Netherlands after 1920 are,

1922 Marsdiep 2 km )
EyerJandse gat 2 km ( linking up Frisian islands
VJie 6 km )

1930 Volkerak - HeJlegat 2 km)
1952 Volkerak 1.5 km ( in the Southwest (Zeeland)

" Haringvliet I km,

Great difficulties were met with especiaJly during the crossing of the Vlie by
W. Schermerhorn, who says in his report that the measurements of such large crossings
(6 km.) is not to be recommended.

Even in the case of the relatively small river-crossings measured in 1952 there
appeared to be so much uncertainty that, for the present, no optical crossings larger
than 2 km. wiJl be performed. Since the widths of the estuaries in Zeeland vary from
4.5 to 10 km, it is àbvious that optical means cannot be applied there.

In Denmark the same problems occur. At the end of the 19th century optical
crossings were made over the Great and Little Beits with a maximum distance of9 km.
(described by General Zachariae). However, on the occasion of the renewal of the
Danish geodetic leveJling in 1938 the optical crossings were considered as being too
uncertain, so that it was decided to use another system, namely the hydrostatic method.

A very big tube-level was used: aleaden hose completely fiJled with water was laid out
in the Belt between the two banks. According to the law of communicating vessels the
water surfaces in the hose on both banks wiJllie in the same level surface provided that

a. there is na air in the tube which divides the water into two, or more, non-commu­
nicating parts,

b. a correction is made for differences in air-pressure above bath surfaces,
c. a correction is made for unequal density by reason of differences in temperature in

the water in the rising sections of the tube.

A similar process of measuring was carried out over the 0resund (1939). These
hydrostatjc levellings form a link in the international chain oflevellings which ring the

Baltic.

1, 3. Underwater gaspipes in the Westerschelde.

Inspired by these Danish measurements consideration was given to the idea that the
method might offer a solution for creating a number of circuits in the south-western
part ofthe Netherlands. In 195 I, for the benefit of the supply of gas to South-BeveJand
and Walcheren, three steel pipes were laid through the Westerschelde from the dyke
near the hamiet of De Griete (Zeeland-Flanders) to the dyke near Baarland (S. Beve­
land).

The Directorate of Energy gave permission to use these pipes for a hydrostatic
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levelling over the Westerschelde before they were put into normal service. By means
of this levelling the circuit S. Beveland-Woensdrecht-Antwerp-Zeeland Flanders
would be closed, while at the same time experience with this method of levelling could
be gained.

The length of the pipes was 4200 metres, the internal diameter 96 mm., making the
capacity of each pipe about 30.400 litres. To avoid affecting its inner lining only fresh
water could be used for filling the pipe, and as no local water-mains were available the
water required had to be brought by boat from Terneuzen harbour.

A sand-bank, called Rug van Baarland, lies almost in the middle of the Wester­
schelde making the shape of the cross section of this part of the estuary something like
the letter W (fig. 2). Because of this shape an air-bubble would occur on the sand­
bank when filling the gas-main with water.

LONGITUDINAL PROFILE OF THE UNDER-WATER GAS-MAIN 3.

Fig. 2 Longitudinal section of Westerschelde at gas-main number 3.

To remove such an air-bubble two different methods seemed to be possible:

using a large pump to cause the water in the pipe to be in rapid motion so that the
air-bubble, if not altogether swept away, could yet be braken up and thus removed
bit by bit,
placing a tap on the highest point of the pipe on the sand-bank thraugh which the
air could escape.

Preferenee was given to the first method because it was of a less drastic nature; only
on the failure ofthis method would taps be used.

In order to limit the use offresh water it was decided to handle two pipes at one and
the same time by fastening them together and then, by means of the pump, causing a
circulation of water. Seeing that one of the pipes, namely number I, is separated by
almost 400 metres from the other two, this pipe was considered as being the least
suitable and was not made use of; moreover if this pipe were used it would be nec­
essary to erect an extra observation post with personnel for the hydrostatic levelling.
Thus only pipes number 2 and 3 were prepared in this way for the work on hand.

2. THE FILLING AND FREEING FRüM AIR

2, 1. The filling of the pipes ; estimation of air-bubble.

At the end of September 1952 the preparatory work for the hydrostatic levelling
could start by filling the underwater gas-mains by the tanker-boat from Ternt'uzen.
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As the time during which this boat could be anchored near the shore at Baarland
was limited, being only about high-tide, and, as the pressure given by the boat's pump
was only small, success in filting a pipe at a single attempt was not achieved. The
tanker-boat had to return twice before both pipes were filled. There was, then, a large
amount of air in the pipes demonstrated by the fact that on removing the pressure
after having pumped the pipes full, much water f10wed back out of them. Apparently
the trapped air expanded after the pressure was re1eased, thus forcing out a quantity
of water. 1t appeared possible, if certain points were taken for granted, to determine
the volume of air in the pipe. The addition, on one side, of a known quantity of water
would cause a rise of water at the ends of the pipe from which deductions could be

made.

The points taken for granted were:

Only one air-bubble was present in the pipe.
This bubble was situated on the sand-bank.
The slope of the pipe was equal at both the extremities of the air-bubble.

According to Boyle's Law VP = constant, while
V = volume of bubble, and P = pressure in bubble.

Then VdP + PdV = 0, in which
dP = increase of pressure inside the bubble. This increase can be estimated
from the rise in the water surfaces after the addition ofa known quantity of water,

P original pressure inside the bubble; to be calculated on the assumption that
it was situated above the sand-bank whose height in reference to the ends of
the pipes was more or less known.

dV change in volume of the bubble; to be measured as the difference between the
known quantity of added water and the measured rises on both ends.

V volume of the bubble; to be calculated from the above formular using these
data.

Only dV could be measured accurately; the estimation of P was fairly correct, while
the value of dP was dependent on the rises of the water surfaces at the ends of the
pipes and those of the water surfaces next to the air-bubble where, however, the
slopes of the pipe were unknown. From two of these tests these unknown slopes could
be calculated, however. 1t appears on looking back, that the assumption that both
slopes are alike had been fairly correct.

2, 2. The pumping-through of the gaspipes.

After the gas-mains were filled and the connection between the two pipes completed
the pumping-through could start. For this purpose the Fire Service in Goes co­
operated by putting a pump at our disposal. By means of this pump, set up on the
dyke near Baarland, success in obtaining a water circulation in both pipes was
achieved; circulatary pumping was done throughout a whole afternoon. At the finish
it was c1ear that still much air was present in both pipes.
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Seeing that the pressure could only be raised to 4 atmospheres on account of the
limited water quantity, and seeing, moreover, that the speed of the circulating water
was unfavourably influenced by the length of the two pipes coupled together, still
another method was tried.

In this case only one pipe (the number 3) was pumped through, the tanker-boat
supplying the water that was forced into the pipe by means ofthe Fire Service's pump.
This water could then flow into the Westerschelde at the other end of the pipe. The
speed of the current achieved was now considerably greater, namely 300 litres per
min. as against 200 litres per min. at thefirst attempt.

At the end of this pumping process, however, no decrease in the volume of air in
the pipe could be reported. A number of experiments done to ascertain the volume of
air showed that there was still an air-bubble in pipe 3 with a volume of 1175 Iitres
(estimated standard-deviation mv = 301itres).

This volume meant an air-bubble of 163 metres length. The slopes of the pipe on each
side of the bubble calculated from the experiments were: tg al = 0.053 tg a

2
= 0.058.

Because of the very slight success achieved by this pumping it was decided to
remove the air-bubbles by fitting taps on the pipes on the sand-bank.

This was done during low-water at spring-tide in the beginning of November. Much
air escaped from the taps, but a new experiment demonstrated that not nearly all the
air had been expelled:

for pipe 3 we found V = 535 Iitres; m v = 30 litres and tg a = 0.03.

This decrease, coupled with the presence of taps near where the remaining air­
bubbles must be, gave occasion for trying once more to expel the air by circulatory
pumping while an observer was on the sand-bank whose duty it was to let any air­
bubbles, which might pass, escape from the taps. This time the process of pumping
was more successful as the following measurements showed:

pipe 3 : V = 390 litres with mv = 12 litres and tga = 0.005
2 : V = 390 m v == 12 "tg a = 0.03

Success in making the pipes air-free was attained after having pumped 3 times more.
Unfortunately on the last day it became evident that pipe 2 had a leak, probably

caused by a ship's anchor, so that for the execution of the hydrostatic levelling only
pipe 3 remained. A unique opportunity of executing two hydrostatic levellings simulta­
neously at the same place was lost.

3. THE MEASURING OF THE HYDROSTATIC LEVELS

3, I. The establishment of observation-posts.

Wooden observation huts were placed over the ends of the pipes 2 and 3 on the
dykes near De Griete and Baarland ; a heavy wooden partition served as a means of
fixing the various instruments.
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Stand-pipcs wilh a diameter of 20 ems. were plaeed on the ends of pipe 3. Au­
tomatic gaugcs were uscd lO asccrtain thc hcigll1s ofthe watcr-surfaces in these stand­
pipcs. A float, whose vertical movemenl was ehangcd over lo a circular movement

Fig. 3
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Fig. 4

round an axis by metlns of a \\ irc. eould 1110\e in thc ~tand-pipe. This axis caused a
pcn.nib lO movc \crtically along the surfaec of a drum bearing a sheet of paper and
revohing on a \'crtieal axis. Thc drum rc\olved. by means of clock\\oork. onec in 7i
days so that lhe nib drc\\ a graph of the \\Ialcr-le\cl in rclation to the Lime taken. Thc
rccording of the \\.ncr·lc\el \\as done 10 truc ~calc: the time scall' being 3 mm I

hour.
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As an automatic gauge has always to be verified against a normal one, such normal
glass-tube gauges had been attached to the stand-pipes.

A barograph was hung at each observation-post for measuring the atmospheric
pressures. These instrurnents being not precise were only intended for ascertaining the
atmospheric pressure between the moments when more precise instruments were being
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read. A micro-barometer (ofthe make Askania) was also placed on each bank, which
makes the reading of the atmospheric pressure possible down to 0.0 I mmo of mercury;
it is designed for barometric measurements of heights. (Fig. 3 and 4)

An electric bell had been fixed to connect the two observation posts on either side
of the estuary so that signals could be transmitted. The current needed was provided
by an accumulator.

Two so-called "handy-talkies" served to carry over reports. The instruments had
also done good service during the preparations for the work.

3, 2. The measuring.

At each post three observers were present who, from Dec. l6th to Dec. 24th,
inclusive, made the readings required. These readings were:

a. Readings ofatmospheric pressure. Aftel' a signal given on the bell the micro­
barometers were read every hour simultaneously. Moreover, on some afternoons these
microbarometers from both banks were brought together and compared in order that
any difference in readings could be known as accurately as possible. However, seeing
that these comparisons caused too much delay, there being no service-boat at our
disposal at the moment, a stop was put to these comparisons. Another reason for
putting a stop to it was that a non-constant difference in reading would be difficult to
take into account, whereas a constant difference could always be taken into account
later.

On the 22nd of December the microbarometers on both banks were read minute by
minute during several hours so that a practically continuous picture of the course of
the barometric heights was obtained on both sides.

b. Observations on the glass-tube. The water-levels at the gauges were read hourly
with a pocket-mle held against the copper nipple of the glass-tube. Owing to a
misunderstanding at De Griete the top level of the meniscus was repeatedly measured
while at Baarland the bottom level was read. Because of this a systematic error
came into being, the size ofwhich was measured later and stated to be 2.6 mmo

Because the surface of the water in the stand-pipes sometimes oscillated very
violently - with a maximum amplitude of about 6 cms - the readings on the gauges
were not always reliable. Now and then the clockworks in the drum of the gauges
were checked; by moving the float somewhat, a verticalline on the water-level graph
was made. The exact time of that line was then written in. The readings of atmospheric
pressure and gauges were as a general mIe made between 9 a.m. and 6 p.m. with a
supplementary reading made later in the evening, between lO p.m. and mid-night.

c. Linking up with thefirst-order level/ing. Some few times levelling was done on
both banks from the zeropoint of the glass-tube - in this case the copper
nipple - to a bench-mark ofthe first-order levelling system.

The stability of this bench-mark was further checked by measuring to one or more
adjacent bench-marks.
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d. Measuring the temperature on the hottom of the Westersche/de. The original plan
to measure the sea-water temperatures on the bottom alongside the underwater gas­
mains each day could not be realized as on the first days the weather was extraordin­
arily rough, whereas later the motor-boat "Westerschelde" equipped for the purpose
oftidal observations, was not available owing to activities elsewhere.

It was only on the 23rd December, under almost ideal weather conditions, that
measurements of temperature could be made. During the turn of the tide a reversing
thermometer was sunk alongside the gas-mains in order to measure the temperature
of the water at the bottom. As the thermometer requires about 10mins. to register the
temperature of its surroundings, only about 15 mins. (sailing time included) were
available for the measurement at each point. Considering that only for about 2 hours
the speed of the current is small enough for the boat to lie reasonably still, only 8
points per turn of the tide could be measured.

The reversing thermometer is a thermometer which enables us to fix the temperature
attained at a certain moment by making the thermometer turn over at that particular
moment. By so doing a quantity of mercury is separated which is decisive for the
temperature at that precise moment. The temperatures showed practically no dif­
ferences. In order to ascertain whether this was normal, temperatures were measured
several times more after the actual periods of observation. In this way the results
found previously were confirmed.

Fig. ó
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TABLE I

A comparis(Jn of fhe heighfs in refafion fo fhe zero-fine measured on fhe graph and fhose read on fhe
gfass-fubes expressed in cms.

Baarland

at bt

De Griete

at bt

Date Time Graph Gauge Diffe- Date Time Graph Gauge Diffe-
1952 measure- measure- rence 1952 measure- measure- rence

ments ments ments ments

Dec. 16 16.40 25.56 16.55 9.01 Dec. 16 16.50 14.15 17.30 - 3.15
16.55 14.16 17.50 - 3.34

Dec. 17 22.15 25.42 16.40 9.02 21.30 14.11 17.60 - 3.49
Dec. 18 9.00 24.97 16.05 8.92 Dec. 17 9.45 14.23 17.60 - 3.27

10.00 25.06 16.05 9.01 10.05 14.22 17.65 - 3.43
11.00 25.08 16.00 9.08 12.40 14.12 17.65 - 3.53
12.08 25.05 15.90 9.15 14.00 14.17 17.50 - 3.33
13.00 25.18 16.15 9.03 15.30 13.99 17.40 - 3.41
14.00 25.22 16.20 9.02 17.00 14.01 17.25 - 3.24
15.05 25.22 16.20 9.02 22.05 14.07 17.30 - 3.23
16.00 25.25
17.15 25.20 16.10 9.10 Dec. 18 9.00 14.17 17.60 - 3.43
18.05 25.07 15.95 9.12 10.00 14.20 17.50 - 3.30
22.03 25.03 15.90 9.13 11.00 14.24 17.60 - 3.36

12.00 14.18 17.60 - 3.42
Dec. 19 9.25 25.05 15.90 9.15 13.00 14.17 17.60 - 3.43

10.00 25.05 16.00 9.05 14.00 14.18 17.50 - 3.32
11.00 25.05 15.90 9.15 15.00 14.15 17.50 - 3.35
12.00 25.05 16.00 9.05 16.00 14.10 17.50 - 3.40
13.00 25.06 15.90 9.16 17.00 14.07 17.40 - 3.33
14.00 25.06 16.00 9.06 18.00 14.08 17.50 - 3.42
15.00 25.14 16.10 9.04 22.00 14.08 17.40 - 3.32
16.00 25.18 16.05 9.13 Dec. 19 9.15 14.00 17.20 - 3.20

10.00 13.99 17.30 - 3.31
11.00 14.04 17.30 - 3.26

16.35 25.21 16.05 9.16 12.00 14.07 17.30 - 3.23
17.04 25.20 15.90 9.30 13.00 14.12 17.30 - 3.18
18.00 25.16 16.00 9.16 14.00 14.16 17.40 - 3.24
24.00 25.11 15.85 9.26 15.00 14.15 17.40 - 3.25

16.00 14.10 17.40 - 3.30
Dec. 20 9.15 25.01 15.80 9.21 16.00 14.10 17.40 - 3.30

10.00 25.01 15.90 9.11 17.00 14.08 17.30 - 3.22
11.00 25.04 15.90 9.14 18.00 14.06 17.30 - 3.24
12.35 25.05 15.95 9.10 24.00 14.04 17.20 - 3.16

Dec. 21 11.40 24.88 15.85 9.03 Dec. 20 9.00 13.96 17.15 - 3.19
15.52 24.88 15.65 9.23 10.00 13.94 17.10 - 3.16
16.02 24.88 15.70 9.18 11.00 13.90 17.00 - 3.10

Dec. 22 9.43 24.68 15.45 9.23 Dec. 21 16.00 13.81 16.95 - 3.14,
12.00 24.65 15.35 9.30
12.52 24.63 15.30 9.33 Dec. 22 15.00 13.72 16.90 - 3.18
14.20 24.63 15.40 9.23 15.39 13.73 16.80 - 3.07
15.02 24.70 15.45 9.25 15.50 13.75 16.85 - 3.10
16.05 24.69 15.45 9.24 16.00 13.75 16.85 - 3.10
17.03 24.70 15.50 9.20 17.00 13.78 16.80 - 3.02
18.40 24.82 15.50 9.32 18.00 13.76 16.85 - 3.09
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at

Baarland

bi

De Griete

bt

Date Time Graph Gauge Diffe- Date Time Graph Gauge Diffe-
1952 measure- measure- rence 1952 measure- measure- rence

ments ments ments ments

23.37 24.64 15.50 9.14 23.38 13.71 16.75 - 3.04
Dec. 23 9.23 24.58 15.40 9.18 Dec. 23 9.22 13.68 16.70 - 3.02

10.00 24.57 15.30 9.27 10.00 13.65 16.70 - 3.05
11.00 24.54 15.30 9.24 11.00 13.65 16.70 - 3.05
12.00 24.54 15.30 9.24 12.00 13.62 16.65 - 3.03
13.05 24.52 15.15 9.37 12.30 13.59 16.65 - 3.06
14.00 24.50 15.20 9.30 13.00 13.60 16.65 - 3.05
15.00 24.51 15.35 9.16 14.00 13.59 16.65 - 3.06

water
added

16.00 24.52 15.25 9.27 17.30 16.82 19.75 - 2.93
water
added
17.00 27.65 18.60 9.05 18.00 16.79 19.75 - 2.96
18.00 27.74 18.60 9.14

Dec. 24 9.11 27.67 18.40 9.27 Dec. 24 9.00 16.76 19.70 - 2.94
10.00 27.67 18.45 9.22 10.00 16.68 19.70 - 3.02
11.00 27.67 18.35 9.32 11.00 16.66 19.65 - 2.99
11.45 27.65 18.35 9.30 11.45 16.61 19.70 - 3.09

3, 3. Elaboration of the data.

a. In the first place with the help of a magnifying-glass, magnification about 6, the
water-heights a, were measured on the gauge-graphs at the times t at which the gauge­
readings bt were taken with reference to the nipple.

The difference in these values, a, - bI' is the zero-error nt of the gauge-graph at
the moment t. (fig. 5, table I, and fig. 6.)

The values n, sometimes differed considerably while there appeared to be a tenden­
cy to a systematic change due to time. Because of this an adjusted value of the zero­
point error N, at any stated moment was always determined from a straight line which
was drawn, as weU as possible, through a series of points on the graph of n,.

With this zero-point error Nt the adjusted water-level B, with reference to the
nipple on the gauge could be fixed at any given moment from the graph of the gauge:

The hydrostatically measured difference in height ht of the nippIes in Baarland and
De Griete is then the difference of the values B t taken simultaneouslyon both banks:

nipple Baarland above nipple De Griete at moment t:

h, = (B), de Gr - (Bt) Brld subject to corrections (fig. 7)
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b. Since, theoretically, a difference in atmospheric pressure L t between the two
banks influences the water-levels, ht is subject to correction.

Therefore a table was made of the measured difference in atmospheric pressure It

(Askania microbarometer) and also one of the differences in heigth ht. If a connection
exists between the two this must appear on a two-dimensional correlation chart in
which each moment fis indicated by a point with co-ordinates It and ht. (Fig. 9)

Theoretically:

L t = (Pt) Brld - (Pt ) De Gr. (expressed in mm of water)

in which P t = atmospheric pressure at moment f,

while (see fig. 7) the exact difference in the height of the nipple Baarland above the
nipple De Griete is H then

H = (Bt) de Gr. + L t - (Bt) Brld = ht + L t

Therefore the theoretica!. connection between ht and L t is a straight line making an
angle of 135 0 with the y-axis (fig. 8).

An index-difference existed between the two microbarometers in use. If this dif­
ference is constant and equal to a certain amount C, then the theoretical relationship
must be

H = ht + It - C

This correlation graph, however, shows no indication of such a relation. On these
grounds it was decided not to make a correction for these differences in atmospheric
pressure lt. The fallacy ofthe correction could be shown again in another way, namely
by fixing the accuracy of the uncorrected differences in height and of these when
corrected by (tt - C), as follows:

standard deviation in uncorrected ht = 1.28 mmo
" "" corrected ht + It - C = 2.73 mmo

(when C is a fixed laboratory value)
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c. It was feared that by not making a correction for atmospheric pressure a sys­
tematic error would result in the difference in heights eventually found, resulting from
an asymetric build-up of the atmospheric pressure field throughout the whole period
of observation.

Therefore the records of atmospheric pressure made by the neighbouring meteoro­
logical stations were investigated; these stations were the lightship Goeree, Hoek van
Holland, Woensdrecht, Antwerp, Brussels, Wevelgem, Coxyde, Vlissingen and some­
times others. From these data isobars were drawn with interval I mb. The difference
of atmospheric pressure

was fixed by means of the interpolation of these figures.

The observation times at the meteorological stations were 0, 3, 6, 9, 12, 15, 18
en 21 hours G. M.T.; the heights of the water B t for these times could again be
measured in the usual way from the gauge-graphs (see table II).

A two-dimensional chart for ht and m t indicates indeed a connection (fig. 10). A
calculation of the regression lines gave namely the following result:

ht = 1.06 mt - 1.40
mt = - 0.38 ht - 0.60
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TABLE Il

D!fferences in height am/ atmospheric pressure as given by the meteorologica/ data

Date Time Difference in Difference in Corrected
MET height pressure difference

in height
ht mt Ht

mm 0.1 mb mm

Dec. 16 16 - 10.0 - 2.7 - 12.7
19 - 12.2 - 4.0 - 16.2
22 - 11.4 - 2.6 - 14.0

Dec. 17 1 - 11.4 -\.3 - 12.7
4 - 10.5 - 1.6 - 12.1
7 -11.0 - 1.4 - 12.4

10 - 11.6 - 1.8 - \3.4
13 - 8.8 - 2.0 - 10.8
16 - 8.2 - 2.7 - 10.9
19 - 10.3 - 3.0 - 13.3
22 - 10.1 - 2.7 - 12.8

Dec. 18 I - 10.1 - 2.0 - 12.1
4 - 12.7 0.0 - 12.7
7 - 12.1 - 0.5 -12.6

10 -15.1 - 0.1 -15.2
13 - 13.6 - 0.8 - 14.4
16 -13.0 0.0 - 13.0
19 - 13.8 0.0 - 13.8
22 -14.5 - 0.4 - 14.9

Dec. 19 I - 14.3 - 0.7 - 15.0
4 - 12.9 - 1.4 -14.3
7 - 13.4 -\.2 -14.6

10 - 13.4 - 0.8 -14.2
13 -14.6 - 0.8 - 15.4
16 -\3.6 - 0.8 -14.4
19 -12.6 - 0.4 - 13.0
22 -12.9 0.0 - 12.9

Dec. 20 I - 13.2 - 1.7 - 14.9
4 - 12.6 - 1.0 -13.6
7 - 12.8 - 1.0 - 13.8

10 - 12.9 - 0.8 - 13.7
13 - 12.0 - 1.5 - 13.5
16 - \3.0 - 1.2 - 14.2
19 -12.4 - 2.3 -14.7
22 -12.5 - 1.4 -13.9

Dec. 21 4 - 13.2 -\.3 -14.5
16 - 12.5 - 0.8 -\3.3

Dec. 22 1 - \3.6 0.0 -\3.6
4 - 13.9 - 0.8 -14.7
7 -\3.1 - 2.5 - 15.6

10 -\3.8 - 0.8 - 14.6
\3 -\3.9 - 0.9 - 14.8-
16 - 13.5 -\.2 -14.7
19 - 12.4 -\.3 - 13.7
22 - 13.3 -\.3 - 14.6

Dec. 23 I -14.4 - 1.6 -16.0
4 -14.7 - 1.0 -15.7
7 - 13.6 - 0.7 - 14.3

10 -\3.7 - 0.3 - 14.0
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Date Time Difference in Difference in Corrected
MET height pressure difference

in height
hl mt Hl

mm 0.1 mb mm

13 - 13.6 - 0.6 - 14.2
16 - 13.7 - 0.3 -14.0
19 - 13.0 - 0.7 -13.7
22 -12.3 - 1.0 - 13.3

Dec. 24 1 - 13.0 -1.1 - 14.1
4 - 13.2 - 0.9 - 14.1
7 - 12.9 - 1.4 -14.3

10 - 12.5 -1.2 - 13.7

Sum
Mean

-723.3
-12.69

- 68.3
- 1.20

-791.6
H = -13.88

Therefore the correction in atmospheric pressure thus found was applied. The
accuracy was improved by so doing:

uncorrected: standard deviation, single observation 1.40 mm
corrected:" " ,,1.07 mm

The corrected difference in height became:

nipple Baarland over nipple De Gr. = 13.9 mms. with a standard deviation 0.14
mmo

The total atmospheric correction amounted to 1.2 mmo The difference in height
stated above had still to be corrected for the differences in reading of the top and
bottom ofthe meniscus (see 3, 2 under b). H = 13.9 - 2.6 = 11.3 mm, standard
deviation 0.2 mmo

No corrections needed to be made for the temperatures read on the bottom of the
Westerschelde (see table III).

Three factors were favourable in the case of these temperatures.
a. By reason of the great difference in the tide and the swiftness of the current the
water in the Westerschelde is mixed in such a way as to make the temperature
nearly independent of the depth.
b. In winter the lack of any considerable heating results in only slight differences in
temperature between the surface water and that in the depths.
C. Seeing that the temperature was in the neighbourhood of 4° C there was a rel­
atively small difference of density in relation to the differences in temperature.

3, 4. Result of the measuring of the circuit.

At the beginning of the third geodetic levelling in 1951 and 1952 measurements
were made in W.Brabant and Zeeland. Seeing that these had not yet been linked up
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with the Ordnance Datum at Amsterdam, provisionary heights were used taking the
height ofthe underground bench-mark Gilze Rijen as a starting point.

The circuit closed by the hydrostatic levelling consists of the following sections:

Nipple Baarland - Kapelle - Woensdrecht,
Woensdrecht - underground bench-mark Ossendrecht,
Underground bench-mark Ossendrecht - underground bench-mark Nieuw
Namen, (Belgian precision levelling)

79



0.0110 m.
+ 0.0113 m.

- --- ----_ .._---

0.0003 m.

HYDROSTATIC LEVELLING ACROSS THE WESTERSCHELDE

Underground bench-mark Nieuw Namen - nipple De Griete.

The total length of the circuit is about 120 kms.
The result was finally:

precise levelling over Antwerp
hydrostatic levelling

From this it fol1ows that the misclosure of the circuit amounts to 0.3 mmo The
standard-deviation ofthe precise-Ievelling over Antwerp may be estimated at \ 120 X
0.6 mm = 6.6 mmo

TABLE l!I

Measlirements ()l temperatllre on the bottom ol the Westerschelde

Date Time Depth Bottom Place (Always sailed in the
in metres temperature direction NS).

in oe.
Dec. 22, 1952 14.18 11.0 4.00 Middelgat (main channelL.W. 14.34 14.5 4.07 north of the sand-bank)14.45 6.0 4.00

15.10 5.0 2.83 gat van Ossenisse15.25 15.5 2.84
15.40 18.0 2.84 (channel south ofthe sand-bank)

Jan. 30, 1953
L.W.

H.W.

9.20 9.0 2.61
9.35 12.5 2.61
9.50 13.5 2.61

10.05 3.5 2.63

10.25 6.5 2.64
10.40 16.5 2.63
11.00 19.0 2.65

15.10 13.0 2.88
15.23 18.0 2.90
15.40 18.5 2.91
15.55 14.0 2.93

16.15 12.0 2.90
16.30 21.5 2.90

Middelgat

gat van Ossenisse

Middelgat

gat van Ossenisse

4. SDME TESTS AND CONSIDERATIONS

4, I. The addition of water.

In order to check whether the pipe was free of air, on Dec. 23 rd, 2 litres of water
were poured quickly into the stand-pipe at Baarland and the movements ofthe water­
levels at Baarland and De Griete were watched.
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With the help of the electric bell the start of the action of the pouring-in of the
water was notified to the observers in De Griete.

The whole mass of the water in the pipe started oscillating with a period of about
220 secs. and an amplitude which decreased rather quickly (fig. 11).
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-
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Theoretically the period of oscillation must be equal to:

T = 7t-jyV-TI = 192 secs.
g

in which I length of water mass in the pipe,
g acceleration of the gravitational force,
S = diameter of the stand-pipe (20 cm),
D = diameter of gas-main (9,6 cm).

The agreement was not precise because in the formula mentioned no account was
taken of friction.

The rises eventually established tally well with those calculated:

established calculated

Baarland 32.1 mmo 31.68 mmo
De Griete 31.4 mmo 31.68 mmo

-----._--

Sum 63.5 mm, 63.4 mmo

so that, hereby, it was once again confirmed that the pipe was free of air.
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4, 2. The non-stop observations of atmospheric pressure.

On Dec: 22nd the atmospheric pressure was read on the Askania microbarometers
every minute from 3 p.m. to 4 p.m. and from 5.33 p.m. to 6.35 p.m. on both banks
simultaneous1y (fig. 12). It appeared that during these 3t hours the difference in
atmospheric pressure decreased by nearly 0.5 mmo mercury without having had any
great influence on the difference in height of the water-surfaces. Theoretically thc
difference in the change of height of the water-surfaces shou1d be: 0.5 X 13.6 = 6.8
mm water, whereas on1y 0.7 mm was recorded as the difference of height of these
surfaces. There may be two causes ofthis:

a. The registering apparatus in the gauge follows (e.g. by reason of friction) only
partially the movement of the water-surfaces.

b. One of the two microbarometers did not always quite keep up with the rapid
change of atmospheric pressure and lagged behind as it were. (Possibly the
instrument at De Griete?)

When we examine the results of the correction of the atmospheric pressure this
second cause seems likely.

MICROBAROMETER READINGS 22 DEC.1952
769mmf--~

BAARLAND

"- ,
'--

\
\
\
\

,....~-- --- - --- ---------- - ----\,~--

I-

I
h

15.00 t6.00
h

Fig. 12

19.00
h

M.E.T.

4, 3. Periodic fJuctuations in the water-level.

The violent f1uctuations in the water-level in the stand-pipes (Par. 3.2b.) which
occurred now and then soon appeared to be but periodic phenomena.
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As a result of the registering of the water-level it could be established that the
phenomenon occurred, on an average, about 1 hour before High Water and its period
varied from 0 to 2 hours.

The maximum amplitude for the gauge was 4 ems, on the graph only 1.8 mm was
shown as the maximum, the period ofvibration Twas only about 1 sec.

In spite of repeated attempts it was not possible to ascertain whether the vibrations
occurring on the two banks were simultaneous or if they differed by a phase of t T.
This was chiefly due to the short period of vibration: it was impossible to transfer the
time signaI with the desired accuracy. The vibration of the water-levels probably start
when the pipe in the Westerschelde begins to vibrate at a certain speed of the tide.
The maximum tidal velocity occurred indeed at about I hr. before High Water, and
according to the report of the commission appointed for the study of the underwater
gasmains in the Westerschelde vibrations with a period of about I sec. are to be
expected then.

4, 4. Change of volume in relation to the tide.

From the graphs of the water-level in the stand-pipes an indication could be found
that the heights ofthe water in the pipe would be dependent on the tide in the Wester-

16 20

29 JAN. '53

24 8

30 JAN.'53

12 16

48

40
BAARLAND

WATER POSITION IN THE SUBSIDIARY
GAUGE ,.e116 mm STAND PIPE CLOSED UP

35

30

25

HW LW HW

Fig. 13
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schelde. In order to confirm this supposition the broad stand-pipc at both observation­
stations was c10sed by we1ding; because only the small glass-tube served as a
stand-pipe a decrease of volume of the whole pipe could be read with greater precision.

On the 29th of Jan. '53 this gauge was read every 5 mins. in Baarland. The water­
level feil 12 cms. between 4.00 p.m. and 9.00 p.m. and after that it began to rise once
more. The time forecasted for Low Water at Terneuzen was 8.48 p.m. so that L.W. in
the Westerschelde tallied very weIl with the lowest position of water in the pipe. On
Jan 30th. the gauge was read every ten minutes between 9.00 a.m. and 4.30 p.m. at both
Baarland and De Griete while at the same time the temperatures at the bottom of the
Westerschclde were measured during the turn ofthe tide at both L.W. and H.W. (fig.
13).

The rise from L.W. to H.W. (in the gauge) when totalled amounts to 20.9 ems., this
is a volume of 20.9 X (1.6)2 X 16/4 = 42 cubiccms.

When the decrease in volume resulting from increase of pressure in the steel pipe due
to the tidal rise is calculated, it is found that the apparent increase of volume of the
water must be this amount:

5.67 P.D. O'
3.33 21.E 1= 10 cublc cms.

P increase of pressure HW - LW = 0.46 kg/square cm.,
D external diameter of the pipe = 10.8 cm,
d thickness of the wall of the pipe = 0.6 cm.,
E modulus of elasticity of steel, = 2.150.000 kg/sq.cm
I contents of the whole pipe = 30.400.000 cubic cm.,

Owing to the infiuence of temperature there will also be a change of volume the
size of which is difficult to define because the pipe is insulated by a thick layer of
mastic. It is improbable that the contents of the pipe react quickly to temperature
changes outside it; for this reason measurements of temperature over a longer period
of time would have been necessary to define this volume change.

Because the fiood of Febr. lst. 1953 totally destroyed the observation post at De
Griete and heavily damaged that at Baarland (this latter, moreover could not be
reached by reason of the damages on the dykes) the observation programme was
suddenly put to an end.

4, 5. Considerations of the above facts.

The experiences gained during this river-crossing are of great importance for sim­
ilar measurement work in the future. The greatest difficulty lay in the preparatory
work, namely, in freeing the pipe from air. Ouring the hydrostatic levellings done in
Germany in 1952 the same problem arose.

In the Danish publications these difficulties are not mentioned; apparently the
system used there was adequate.

Once the pipe is free of air, however, the measurement of the river-crossing is a
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simple matter. The apparatuses used, in the case of the Westerschelde, for fixing the
correction of atmospheric pressure proved to be insufficient. To do the work with, for
instance, Vaisälä-statoscopes probably would give a better result. In Denmark excel­
lent results were obtained with similar instruments. The measurement of water
temperatures at the sea bottom is not so important in the Dutch estuaries with their
strong currents; the question remains, however, whether this conclusion is also valid
for the summer season.

The use of automatic gauges is not necessary when the observation programme is
limited to a few days which, as experience shows, is very well possible.

The observation programme, however, should not be restricted too much since
measurements taken on days with differing structures of the field of atmospheric
pressure give a good insight into the reliability of the corrections necessary for at­
mospheric pressure.

The possibility should be thoroughly considered that with certain speeds of the
current in the estuary that is to be crossed, violent vibrations in the gauges may occur.
These fiuctuations were also recorded in the German levellings in 1952.

Finally, a good telephonic connection between the two observation parts must be
considered essential.

The Surveying Department of the Ministry of Transport and Waterstaat is much
indebted to the following bodies :
The Directorate of Energy, the Study centre of the "Rijkswaterstaat" in Vlissingen,
the Fire Service at Goes, the Hydrographic Service of the Royal Netherlands Navy,
the Royal Netherlands Meteorological Institute in De Bilt, the University Technical
College at Delft and the Surveyor's Department of Rotterdam.

Thanks to their valuable co-operation the hydrostatic levelling could be achieved.

Postscript

Since this report was written there has been much further activity in the field of
hydrographic levelling in the Netherlands. Measuring posts on poles were placed in
the sea at a considerable distance from the coast. Levellings across sea arms in north­
west and southwest Holland (Frisian islands and islands of Zeeland) have been
or are being carried out; their results will be discussed perhaps in a later report of
this series.
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