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Abstract

Vegetable oils (Vo) are an alternative to fish oil (Fo)
in aquaculture feeds. This study aimed to evaluate
the effect of dietary soybean oil (Vo diet), rich in
linoleic acid, and of dietary fish oil (Fo diet) on the
development of spinal deformities under bacterial
lipopolysaccharide (LPS)-induced chronic inflam-
mation conditions in Atlantic salmon, Salmo salar
L. Fish [25 g body weight (BW)] were fed the
experimental diets for 99 days. On day 47 of
feeding (40 g BW), fish were subjected to four
experimental regimes: (i) intramuscular injections
with LPS, (ii) sham-injected phosphate-buffered
saline (PBS), (iii) intraperitoneally injected com-
mercial oil adjuvant vaccine, or (iv) no treatment.
The fish continued under a common feeding regime
in sea water for 165 more days. Body weight was
temporarily higher in the Vo group than in the Fo
group prior to immunization and was also affected
by the type of immunization. At the end of the trial,
no differences were seen between the dietary groups.
The overall prevalence of spinal deformities was
approximately 14% at the end of the experiment.
The Vo diet affected vertebral shape but did not
induce spinal deformities. In groups injected with
LPS and PBS, spinal deformities ranged between
21% and 38%, diet independent. Deformed ver-
tebrae were located at or in proximity to the

injection point. Assessment of inflammatory
markers revealed high levels of plasma prostaglan-
din E2 (PGE2) in the Vo-fed and LPS-injected
groups, suggesting an inflammatory response to
LPS. Cyclooxigenase 2 (COX-2) mRNA expression
in bone was higher in fish fed Fo compared to
Vo-fed fish. Gene expression of immunoglobulin M
(IgM) was up-regulated in bone of all LPS-injected
groups irrespective of dietary oil. In conclusion, the
study suggests that Vo is not a risk factor for the
development of inflammation-related spinal defor-
mities. At the same time, we found evidence that
localized injection-related processes could trigger
the development of vertebral body malformations.

Keywords: arachidonic acid: eicosapentanoic acid
(AA: EPA), Atlantic salmon, fatty acids, inflamma-
tion, prostaglandins, spinal deformities.

Introduction

Vertebral column deformities are a common
problem in salmon farming (Waagbø, Kryvi,
Breck & Ørnsrud 2005; Witten, Gil Martens,
Hall, Huysseune & Obach 2005; Fjelldal, Hansen
& Berg 2007; Sullivan, Hammond, Roberts &
Manchester 2007; Waagbø 2008). Deformities
cause down-grading of the product (Michie 2001)
and constitute a problem for animal welfare
(Hansen, Fjelldal, Yurtseva & Berg 2009). The
most common type of deformity is compression of
vertebrae (platyspondyly) (Witten et al. 2005), in
the caudal part of the spine (Fjelldal, Hansen,
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Breck, Sandvik, Waagbø, Berg & Ørnsrud 2009).
The aetiology of platyspondyly appears to be mul-
tifactorial (Vågsholm & Djupvik 1998; Waagbø
et al. 2005; Waagbø 2008). Risk factors that may
promote the development of spinal deformities in
salmon are genetics (McKay & Gjerde 1986; Gjerde,
Pante & Bæverfjord 2005), nutrition (Vielma & Lall
1998; Waagbø, Hamre & Maage 2001; Ornsrud, Gil
& Waagbø 2004; Lall & Lewis-McCrea 2007;
Waagbø 2008; Fjelldal et al. 2009), production
conditions of under-yearling smolts (Fjelldal, Lock,
Grotmol, Totland, Nordgarden, Flik & Hansen
2006), environmental factors (Wargelius, Fjelldal &
Hansen 2005; Gil Martens, Witten, Fivelstad,
Huysseune, Sævareid, Vikeså & Obach 2006) and
vaccination (Berg, Rødseth, Tangerås & Hansen
2006; Aunsmo, Guttvik, Midtlyng, Larssen, Evensen
& Skjerve 2008).

It is known from biomedical research that
inflammation can alter the normal pattern of bone
growth (Raisz 1999, 2005; Hughes, Turner, Beli-
basakis & Martuscelli 2006) and can lead to spinal
deformities (Gratacos, Collado, Fillella, Sanmarti,
Llena, Molina, Ballesta & Munoz-Gomez 1994).
Inflammation as a risk factor for spinal deformities
in salmon was suggested by Kvellestad, Høie,
Thorud, Tørud & Lingøy (2000) but has not yet
been investigated experimentally. Inflammation can
be defined as the reaction of a living vascularized
tissue to a localized damage and plays a role in both
normal repair reactions and the pathogenesis of
disease (De Caterina & Basta 2001). Inflammation
affects bone development at two levels in mammals:
(i) systemic inflammation alters the animals�
hormone and mineral homeostasis as well as its
nutritional metabolism, (ii) local inflammation
influences growth and remodelling of bone as a
result of prostaglandin and cytokine release (Raisz
2005; Hughes et al. 2006). It is not known whether
bone of teleost fish is affected in a similar way as in
mammals (Witten & Huysseune 2009). In com-
mercial farming, handling of fish during vaccina-
tion, grading, pumping and transport may affect
the integrity of the spine and may induce local
inflammation. Fast-growing under-yearling smolts
(so-called 0+ smolts or autumn smolts) have a
reduced bone mineral content and lower mechan-
ical strength. These features have been associated
with increased predisposition to develop spinal
deformities in sea water (Fjelldal et al. 2006, 2007).

Vegetable oils are currently used as alternative
lipids in aquaculture feeds. The effects of vegetable

oils on the physiology of fish have been reviewed by
Turchini, Mentasti, Frøyland, Orban, Caprino,
Moretti & Valfre (2003). Evidently, partial replace-
ment of fish oil in fish feed formulations does not
compromise growth (Turchini et al. 2003; Bell
2008; Izquierdo, Robaina, Juarez-Carrillo, Oliva,
Hernandez-Cruz & Afonso 2008; Berge, Witten,
Baeverfjord, Vegusdal, Wadsworth & Ruyter 2009)
or health (Waagbø, Sandnes, Jørgensen, Engstad,
Glette & Lie 1993; Bell, Torstensen & Sargent
2005). Vegetable oils that are rich in n-6 polyunsat-
urated fatty acids have been associated with chronic
inflammatory diseases in humans (Watkins, Li,
Allen, Hoffmann & Seifert 2000; Gil 2002; Plumb
& Aspden 2004; Calder 2005; Pilbeam & Raisz
2005; Cashman 2008). Soybean oil, sunflower oil,
rapeseed oil and cottonseed oil contain high levels of
linoleic acid (18:2n-6, LA), while crude palm oil,
olive oil and coconut oil are rich in monounsaturated
fatty acids (MUFA) (Turchini, Torstensen & Ng
2009). LA serves as a precursor for arachidonic acid
(AA, 20:4n-6), a substrate for eicosanoid synthesis.
Eicosanoids are signalling molecules made from
either n-3 or n-6 essential fatty acids. They are
involved in many processes, particularly in inflam-
mation and immunity. Among the eicosanoids are
the biologically active prostaglandins that are potent
regulators of inflammation (Henderson & Tocher
1987; Rowley, Knight, Lloyd-Evans, Holland &
Vickers 1995; Calder 2005). Studies on Atlantic
salmon suggest a close correlation between dietary
fatty acids and tissue fatty acids (Bell & Raynard
1990; Bell, Ashton, Secombes, Weitzel, Dick &
Sargent 1996b; Sargent, Tocher & Bell 2002;
Ruyter, Moya-Falcon, Rosenlund & Vegusdal
2006; Berge et al. 2009; Turchini et al. 2009;
Petropoulos, Thompson, Morgan, Dick, Tocher &
Bell 2009) including in immune competent organs
like spleen and head kidney (Waagbø et al. 1993;
Waagbø, Hemre, Holm & Lie 1995). The dietary
fatty acid composition influences the eicosanoid
production (Bell, Farnadale, Dick & Sargent 1996a;
Gjøen, Obach, Røsjø, Grisdale-Helland, Rosenlund,
Hvattum & Ruyter 2004; Gjøen, Kleveland, Moya-
Falcon, Frøystad, Vegusdal, Hvattum, Berge &
Ruyter 2007). By feeding vegetable oils, tissue n-6
PUFA levels increase together with the amount of
eicosanoids produced from AA (Gjøen et al. 2004).
According to Sargent, Bell, McEvoy, Tocher &
Estevez (1999), the arachidonic acid: eicosapenta-
noic acid (AA: EPA) ratio determines the type of
eicosanoids, because EPA competitively inhibits the
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formation of eicosanoids from AA. A high AA: EPA
ratio enhances synthesis of PGE2, a highly active pro-
inflammatory product. In contrast, a low AA: EPA
ratio leads to the production of series 3 eicosanoids
that are considered less potent compounds. The
effect of vegetable oils on the development of
inflammation associated with fish skeletal tissues is
presently not known, but intraperitoneal injection
with oil-adjuvanted vaccines has been linked to the
development of spinal deformities in fish (Berg et al.
2006; Aunsmo et al. 2008). Vaccines are indeed
known to cause inflammation-like tissue reactions
adjacent to the injection site (Midtlyng 1996).

The present study was designed to investigate
whether LPS-induced inflammation located close to
the spine can cause spinal malformations and
whether such inflammation-related deformities
develop more or less frequently in animals that
have been fed different dietary AA/EPA ratios
derived from Vo and Fo, respectively.

Materials and methods

Experimental design and rearing conditions

Atlantic salmon, Salmo salar L., juveniles (n = 720,
initial body weight 25 g), Aquagen strain, spawned
in November 2007, were distributed randomly to
six fibreglass tanks (1 · 1 · 0.43 m diameter) at
the Institute of Marine Research, Matre, Norway.
Fish were anaesthetized with 40 mg benzo-
caine L)1 (Benzoak� Vet; A.C.D. SA) and intra-
abdominally tagged (ID-100A Microtransponder;
Trovan Ltd.) 14 days before starting the experi-
ment. On 27 October, triplicate groups of fish were
fed two experimental diets for 99 days. At day 47
(40 g), each dietary group was subjected to four
experimental regimes with 25 fish in each: (i) single
injection of bacterial lipopolysaccharide (LPS), (ii)
single injection of phosphate-buffered saline (PBS,
placebo), (iii) commercial vaccination, or (iv) no
treatment. LPS and PBS injections were performed
intramuscularly at a standardized point resulting
from the intersection between the lateral line and a
vertical line demarcated by the anterior edge of the
anal fin. This point corresponds to vertebrae 39–41
and is located in spinal region 3 (as described by
Kacem, Meunier & Bagliniere 1998). Bacterial
lipopolysaccharide (LPS, Escherichia coli 0111:B4,
phenol extracted; SIGMA) was injected at a dose of
approximately 30 mg kg)1 fish (1.14–1.26 mg LPS
per fish) in suspension with 0.2 mL PBS. The

placebo group was injected with 0.2 mL PBS. One
syringe with a detachable sterile needle was used per
individual for LPS and PBS treatments. A third
group was injected intraperitoneally with 0.2 mL
commercial oil-adjuvanted vaccine (Compact 6
Vet, Norvax�; Intervet) using a vaccination pistol
(Dosys� 173 classic; Socorex Isba S.A.) and
following a standard in-house vaccination proce-
dure for experimental fish (IMR; Matre).

The water temperature was 8.3 � 1.1 �C (days
1–46) and 7.1 � 1.0 �C (days 47–99). Fish were
transferred to sea water on day 99 (2 February,
2008). Oxygen was kept above 9 mg L)1. The light
regime was in accordance with that used for under-
yearling smolt production: 12 h light and 12 h
darkness regime for 6 weeks continued by 24 h
light for 3 weeks until smoltification. Fish were fed
to satiation using automatic feeders. The tanks were
checked daily for mortalities.

Diets

Two diets containing 490 g kg)1 protein (a mix
of marine and vegetable protein) and 190 g kg)1

lipids were formulated based on the same basal mix
of raw materials, differing only in the type of
supplemental oil: fish oil (Fo) (Nordsildmel)
and refined soybean oil (Vo) (COOP Norden)
(Table 1). The feed was produced in two pellet sizes
(2 and 3 mm) at Ewos Innovation facilities. Fish
were fed the experimental diets until the artificially
induced smoltification (day 99). Subsequently, all
fish were transferred to one 5 · 5 m sea cage,
reared under natural light regime, and fed a
common commercial diet for 165 days. In total,
the trial lasted for 264 days.

Table 1 Feed formulation in two pellet sizes (2 and 3 mm) of

the 100% Fo (100% fish oil) and 100% Vo (100% soybean oil)

diets fed to Atlantic salmon under-yearlings for a 99-day period

in fresh water (g kg)1 feed)

100% Fo 100% Vo

Fish meal 280 280

Soy protein concentrate 300 300

Wheat gluten 80 80

Wheat grain 134.7 134.7

Rovimix Stay-C 35% 0.3 0.3

Vitamin premix 1 1

Mineral premix 1 1

Northern hemisphere fish oil 203 0

Soybean oil 0 203

TBARS values in the diet were 17.43 and 12.64 nmol g)1 feed and

vitamin E levels (a-Tocopherol) were 253 and 225 mg kg)1 feed in the

Fo and Vo diets, respectively.
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Fish sampling

Ninety individuals per experimental group (30 fish
per tank) were individually weighed at the start of
the trial (day 0) and one day before injection (day
46). All remaining fish were measured at the end of
both the freshwater and the seawater periods (days
99 and 264, respectively). Fish sampled on days 0
and 46 were returned to the experiment; tissue
samples and X rays (n = 98) were taken on day 99
(fish were removed from the experiment), while the
rest of the population was followed up in sea water
until the final sampling (day 264).

The specific growth rate (SGR %) was calculated
according to the formula:

SGR% ¼ FinalW

InitialW

� �
1=days � 1

� �
� 100

where InitialW and FinalW are the initial and the
final fish weights for a given period (triplicated
tanks), and days is the number of feeding days for
the period.

The condition factor (CF) was calculated as:

CF ¼ W ðg Þ
FLðcm3Þ

� �
� 100

where W and FL correspond to body weight and
fork length of the individual fish.

Fish were anaesthetized as described earlier and
subsequently killed by a blow to the head. Blood
samples were taken from the caudal vein using
heparinized syringes and needles and were stored on
ice until isolation of plasma by centrifugation.
Plasma samples were frozen on dry ice and stored at
)80 �C until analysis. Six vertebrae anterior to the
injection point were removed and frozen on dry ice
for gene expression and bone fatty acid analyses.
Six vertebrae posterior to the injection point were
fixed for histological examination in 10% buffered
formalin (formaldehyde solution at 37%), followed
by 80% ethanol after 24 h.

All fish were examined for external signs of
deformities at the end of the freshwater and the
seawater periods. Ninety-eight individuals and 240
fish were individually measured, weighed and
radiographed at the end of the freshwater and the
seawater periods.

Analytical procedures

On day 99, blood samples from six fish per
experimental group were taken for the assessment

of systemic inflammation markers. Plasma lysozyme
was analysed with a turbidometric microtitre assay
according to Ellis (1990). Plasma protein was
analysed in a multipurpose diagnostic autoanalyzer
(Maxmat PL Analyzer), based on a colorimetric
biuret protein assay according to standardized
reagents and procedures from the manufacturer.

PGE2 was analysed by mass spectrometry. The
prostaglandin extraction was performed as previ-
ously described by Araujo & Frøyland (2006).

Bone fatty acid composition was analysed in
three bone samples per experimental diet, each one
consisting of pooled samples from four fish taken
from the Fo and Vo untreated control groups. The
samples comprised five vertebrae (vertebrae 38–42),
which were homogenized with N2 in a mortar.
Lipids were extracted from diets and bone samples
with chloroform: methanol (2:1, v/v) and analysed
by gas chromatography (GC) as described by
Torstensen, Bell, Rosenlund, Henderson, Graff,
Tocher, Lie & Sargent (2005).

For mRNA expression analysis, the first six
vertebrae prior to the injection point (vertebrae
33–39) were sampled 52 days post-injection (day
99). Samples were dissected, cleaned from sur-
rounding tissue, frozen in liquid nitrogen and kept
at )80 �C until analyses. Individual samples were
crushed and homogenized. Total RNA was ex-
tracted and isolated from the samples using Fast-
Prep and TRI reagent� (Sigma-Aldrich Norway
AS) according to the manufacturer�s instructions.
Genomic DNA was eliminated from the samples by
RQ DNase I (Promega GmbH) treatment and
stored at )80 �C until analysis. Quantity and
quality of the isolated RNA was assessed by a
NanoDrop� spectrophotometer (NanoDrop Tech-
nologies). Only samples with a 260/280 nm absor-
bance ratio of 1.8:2.0 were approved. The RNA
integrity was evaluated by an Agilent 2100 Bioan-
alyzer (Agilent Technologies) using a RNA 6000
Nano LabChip� Kit (Agilent Technologies). Only
samples showing no sign of RNA degradation were
used. Stranded cDNA was reverse transcribed from
250 ng RNA using a Reverse Transcription Core
Kit (RT-RTCK-05; Eurogentec).

Primers for amplification and detection of
mRNA for IgM (forward primer 5¢-TGGGA
AAATGACAATG GAAAGA-3¢, nt961, reverse
primer 5¢-GTGATGTCAAGTATGGC AATTT-
TGT-3¢, nt1034) (Hordvik, Berven, Solem, Hatten
& Endresen 1997), Cox2 (forward primer 5¢-AT-
CACCTTTGTGCGAAACGC-3¢ (nt42), reverse
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primer 5¢-CCTC CCAGCTCTTGTAGCCATA-
3¢, nt151) (Ingerslev, Cunningham & Wergeland
2006) and MMP-13 (forward primer 5¢-GTTT-
CTTTGGCCTCCAGGTG-3¢, nt209), reverse
primer 5¢-TCGTC ACAGTCT CAGCGTCC-3¢,
nt260) (Skugor, Glover, Nilsen & Krasnov 2008)
in addition to the control gene elongation factor
alpha (ef1a) (Olsvik, Lie, Jordal, Nilsen & Hordvik
2005) were designed using the Primer Express 2.0
software (Applied Biosystems).

Real-time PCR was carried out on an ABI 7900
Fast Real-Time PCR System (Applied Biosystems)
using SYBR� Green PCR Master Mix (Applied
Biosystems), with the following thermal cycling
conditions: 50 �C for 2 min followed by 98 �C for
10 min, and then 40 cycles of 95 �C for 15 s
followed by 60 �C for 1 min. The samples were run
in triplicate in a 96-well PCR plate. No-template
controls (NTC) for each gene were run on each
PCR plate. To determine the efficiency of targets in
relation to reference (ef1a), a standard curve and a
validation experiment described in ABI were used
(User Bulletin #2; ABI 7700 sequence detection
system). In the validation experiment, 250, 125,
62.5 and 31.25 ng of RNA were used for cDNA
synthesis, and the slope of log input amount of
RNA versus delta Ct was for IgM/ef1a = )0.04, for
Cox2/ef1a = )0.1 and for MMP-13/ef1a = )0.03
which is <0.1. This demonstrates that the effi-
ciency between target and reference genes was
approximately equal. The relative expression level
was calculated using the Comparative Ct method
(ABI User Bulletin #2; ABI 7700 sequence detec-
tion system).

Radiographs were taken with a portable X-ray
apparatus (HI-Ray 100; Eickenmeyer Medizintech-
nik für Tierärzte e.K.) and 30 · 40 cm film
(FUJIFILM IX 50; FUJIFILM Corp.). The film
was exposed twice for 50 mA s and 72 kV and
developed using a manual developer (Cofar Cemat
C56D) with Kodak Professional manual fixer and
developer (KODAK S.A.). The pictures were
digitalized by scanning (Epson Expression 10000
XL; Seiko Epson Corp.). The vertebral length and
dorso-ventral diameter were measured by means of
image analysing software (Image-Pro Plus, version
4.0; Media Cybernetics). The vertebral column was
divided into four main regions based on Kacem
et al. (1998): region 1 (cranial trunk), comprising
vertebrae 1–8 (V1–8); region 2 (caudal trunk)
V9–30; region 3 (tail), V31–49 and region 4 (tail
fin) V50–58. Observed vertebral deformations were

classified according to Witten, Gil Martens,
Huysseune, Takle & Hjelde (2009).

For histological analyses, the vertebrae were fixed
in 10% buffered formalin for 24 h and preserved in
70% ethanol. The samples were decalcified in a
10% EDTA solution buffered with 0.1 m Tris–
HCl, pH 7.0 for a period of 8 weeks. After
decalcification, the samples were stepwise dehy-
drated and embedded in paraffin blocks. Five-
micrometer (lm) serial sections (80 sections per
block) were taken in the sagittal plane of the
vertebrae, from the periphery to the middle plane of
the spine. Sections were stained with haematoxylin/
eosin and Masson�s trichrome as described by
Witten & Hall (2002). Histological sections were
examined to evaluate the presence of inflammatory
cells and bone microstructure.

Statistical analysis

Growth parameters, inflammatory markers and
fatty acid composition of bone were statistically
evaluated using a one-way (period days 1–45) or
two-way ANOVA (period days 46–264) followed
by Tukey�s HSD test. To evaluate differences in the
frequency of deformities, arcsine-transformed val-
ues were used for further statistical analysis (Sokal
& Rohlf 1995). The data were analysed with the
program Statistica (version 8.0; StatSoft Inc.). The
significance level was set to P < 0.05, and the data
are presented as mean � SD.

Results

Feed composition

The fatty acid profiles of the experimental feeds
are presented in Table 2. The Fo diet contained
higher levels of saturates, monoenes and n-3 fatty
acids than the Vo diet. Eicosapentaenoic acid
(EPA) and docosahexaenoic acid (DHA) nutri-
tional requirements (Ruyter 1998) were also met
in the Vo diet (1.3% DHA and 0.9% EPA). The
n3/n6 ratios in the Fo and Vo diets were 4.1 and
0.2, respectively, with respective AA/EPA ratios of
0.04 and 0.1.

Growth

Fish fed Vo showed a significantly higher body
weight and condition factor than the group fed Fo
before the injection was performed (day 46)
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(Table 3). No differences in body length were
observed in the same period. Fish fed Vo and
subjected to LPS injection presented a significantly
lower weight and SGR compared to other exper-
imental groups 52 days after LPS injection. No
differences in growth rate during the period in sea
water or weight at the final sampling were observed.
Mortality rate was below 2% and was not related to
any experimental group.

External examination and radiology

At the end of the grow-out period (day 264), all fish
were externally normal, and the overall condition
factor was high (1.4 � 0.14). Few visible signs of
spinal deformities were observed in either of the
experimental groups.

Using radiology, the overall prevalence of fish
with one or more deformed vertebrae was 8.9%
and 13.9% at the end of freshwater and seawater
periods, respectively. Three different types of
vertebral malformations were observed: multiple
fusions located in the trunk (types 6 and 8; Witten
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Table 2 Fatty acid compositions in the experimental diets and

in bone from Atlantic salmon smolts fed either fish oil (Fo) or

vegetable oil (Vo) for a period of 99 days

Fatty acids

(mg FA g)1)

Diet Bone

Fo Vo Fo Vo

14:0 7.5 0.6 6.9 � 0.7a 3.3 � 0.5b

16:0 13.1 11.0 18.5 � 1.8 16.4 � 2.0

18:0 1.5 3.6 3.8 � 0.3 5.2 � 0.5

Saturated FA 22.9 16.3 30.4 � 3.0 26.0 � 3.4

16:1n-7 4.5 0.6 6.8 � 0.8a 3.8 � 0.5b

18:1n-7 1.5 1.5 3.2 � 0.3 2.8 � 0.3

18:1n-9 7.9 21.8 18.9 � 2.0 23.9 � 2.7

18:1n-11 0.4 0.0 1.3 � 0.1a 0.4 � 0.1b

20:1 (sum isomers) 12.9 3.0 10.0 � 1.0a 3.8 � 0.7b

22:1 (sum isomers) 19.9 28.9 10.5 � 1.1a 3.4 � 0.8b

Monoenes FA 47.4 26.9 3.0 � 5.6b 39.6 � 4.9a

18:2n-6 4.5 47.7 7.1 � 0.6b 24.1 � 3.8a

20:4n-6 0.3 0.1 0.8 � 0.1b 1.0 � 0.1a

n-6 FA 5.0 47.7 8.8 � 0.7b 28.1 � 4.2a

18:3n-3 1.5 5.4 1.6 � 0.2b 2.4 � 0.3a

20:4n-3 0.6 0.0 1.1 � 0.1a 0.7 � 0.1b

20:5n-3 6.6 0.9 6.0 � 0.6a 3.7 � 0.4b

22:5n-3 0.6 0.0 2.4 � 0.3a 1.6 � 0.2b

22:6n-3 6.8 1.3 13.8 � 1.6a 9.1 � 0.9b

n-3 FA 20.3 7.9 28.6 � 3.4a 19.8 � 2.2b

n-3/n-6 4.1 0.2 3.2 � 0.2a 0.7 � 0.0b

AA:EPA 0.1 0.2 0.1 0.6

Significant effects between dietary groups (control fish) were determined

by one-way ANOVA.

n.s., no significant effects, no letters indicate significant effects (P <

0.05).
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et al. 2009) and one-sided vertebral compression in
the tail (Type 5; Witten et al. 2009) (Fig. 1a). Type
6 involved 6–8 vertebrae and was the predominant
type at the smolt stage (Fig. 1a). Type 5 involved

between two and three vertebral bodies and
emerged during the seawater period (Fig. 1b).

In fish fed either Fo or Vo and injected with LPS
or PBS, the prevalence of one or more deformed
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Figure 1 Spinal deformations observed in Atlantic salmon. (a) Number and location of deformities along the entire spinal column

observed for fish with deformities at smolt stage (day 99) and end of seawater period (day 264). (b) Type of vertebral malformations

observed at smolt stage (A, B) and end of seawater period (C, D). (c) Relative percentage of spinal deformities at the end of seawater

period (day 264) in Atlantic salmon fed fish oil (Fo) and vegetable oil (Vo) – containing diets for 99 days and subjected to different

treatments on day 47 of feeding: (a) intramuscular injections of bacterial lipopolysaccharide (LPS), (b) sham-injected phosphate-buffered

saline (Placebo), (c) intraperitoneal injection of oil adjuvant vaccine (Vaccinated) or (d) no treatment (Control).
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vertebrae ranged between 21% and 38% (Fig. 1c).
No significant differences were observed in relation
to diet. However, fish injected with either PBS or
LPS displayed a high prevalence of deformities in
region 3 (tail region, vertebrae 31–49). Most of the
one-sided vertebral malformations were co-located
with the injection point (vertebrae 39–41).

Vertebral morphology

At the end of the experiment (day 264), the ratio
between vertebral length /dorso-ventral diameter
was significantly lower in region 3 in the fish fed Vo
(Table 4). A local effect from the injection was
observed in vertebrae 39–41 in fish that were PBS
and LPS injected. These fish had a significantly
lower (1-way ANOVA, P = 0.0139) vertebral
length/dorso-ventral diameter compared to fish that
were not intramuscularly injected (Vaccinated and
Control in Fig. 2).

No evidence of vertebral malformations was
observed at day 99 of feeding. All groups displayed
numerous large granulocytes (Fig. 3a–d) adjacent to
the spine. Granulocytes in the vicinity of the
vertebral body growth zone were observed on
sagittal sections. Granulocytes were located in the
connective tissue that surrounded the spinal cord.
Cells ventral to the spinal cord were in proximity to
the dorsal vertebral body growth zone. Abundance
and location of granulocytes were similar in animals
from all experimental groups. No other signs of
chronic inflammation were observed at day 99 of
feeding since no infiltration of melano-macro-
phages, fibrosis or granulomatous foci was seen in
bone tissue.

Bone fatty acid composition

Bone total lipid fatty acid composition mirrored
that from the diet (Table 2). Fish fed soybean oil
had higher levels of both linoleic acid and AA, and
the AA/EPA ratio in bone was 0.1 and 0.3 in the Fo
and Vo groups, respectively.

Systemic inflammation markers in plasma

Plasma lysozyme values (Fig. 4a) ranged from 37.3 to
295 U mL)1. No dietary differences were observed
between groups; however, treated fish (placebo, LPS
and vaccinated) tended to have higher plasma levels
compared to untreated control groups, but these were
not statistically different (P-value, 0.25). T
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Fish fed vegetable oil and subjected to LPS
injection had significantly higher PGE2 levels in
plasma (P < 0.05) compared to the other exper-
imental groups (Fig. 4b).

Local inflammation markers in bone

An up-regulation of IgM mRNA was observed in
the group that were fed the Fo diet and injected

*

Figure 2 Vertebral morphometrics measured as ratio between vertebral length and dorso-ventral diameter at the end of seawater period

(day 264) in Atlantic salmon fed fish oil (Fo) and vegetable oil (Vo) – containing diets for 99 days and subjected to different treatments

on day 47 of feeding: (a) intramuscular injections of bacterial lipopolysaccharide (LPS), (b) sham-injected phosphate-buffered saline

(Placebo), (c) intraperitoneal injection of oil adjuvant vaccine (Vaccinated) or (d) no treatment (Control). Data presented as

mean � SEM.

(a) (b)

(c) (d)

Figure 3 (a–d) Histological markers of inflammation in bone at day 99 of feeding in Atlantic salmon subjected to different treatments

on day 47 of feeding: (a) intramuscular injections of bacterial lipopolysaccharide (LPS), (b) sham-injected phosphate-buffered saline

(Placebo), (c) intraperitoneal injection of oil adjuvant vaccine (Vaccinated) or (d) no treatment (Control). Black arrowhead,

granulocytes. White arrowhead, osteoblasts located in the vertebral body growth zone. White cross, notochord sheath separating two

adjacent vertebral bodies. Black asterisk, adipose tissue. White asterisk, spinal cord (Masson�s trichrome, bars = 50 lm).
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with LPS (Fig. 5a). No significant differences in
COX-2 mRNA expression were observed between
the experimental treatment groups; however, fish
fed fish oil presented consistently higher levels of

COX-2 mRNA expression than the Vo fed fish
(Fig. 5b). No significant differences in MMP13
mRNA abundance were observed (Fig. 5c). The
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injection of oil adjuvant vaccine (Vaccinated), or (d) no
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subjected to different treatments on day 47 of feeding: (a)

intramuscular injections of bacterial lipopolysaccharide (LPS),

(b) sham-injected phosphate-buffered saline (Placebo), (c) intra-

peritoneal injection of oil adjuvant vaccine (Vaccinated) or (d) no

treatment (Control). Data presented as median (horizontal line),

95% confidence interval (box) and min–max values (whiskers).
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vaccinated groups were not analysed for these bone
inflammation markers.

Discussion

Spinal deformities are a recurring problem in
Atlantic salmon aquaculture, and many fish farm-
ing-related variables have been suggested as risk
factors. The presence of inflammatory cells in
connection with abnormal bone and cartilage
development has been reported in intensively
farmed salmonids (Ostland, McGrogan & Fergu-
son 1997; Kvellestad et al. 2000) and in wild
cyprinid fish (Kent, Watral, Whipps, Cunningham,
Criscione, Heidel, Curtis, Spitsbergen & Markle
2004). Therefore, we proposed that inflammation
could be a physio-pathological mechanism that
disrupts the normal pattern of bone growth.

The overall prevalence of spinal deformities at the
end of the trial was 8.4% at the smolt stage and
13.9% at the end of the experiment. This prevalence
was similar to that observed by Fjelldal et al. (2007),
who investigated the development of spinal defor-
mities in individually tagged Atlantic salmon and
reported a 7% and 12.4% prevalence of spinal
deformities at the parr stage and 10 months after
smoltification, respectively, suggesting that our
results could be a normal background level of
deformities. The character of vertebral deformations
observed at the smolt stage (day 99) differed
consistently with those observed at day 264 in sea
water, although it should be pointed out that these
samplings were not performed on the same individ-
uals (Fig. 1a). At the smolt stage, deformities
consisted of multiple vertebral fusions, compressions
and vertebral dislocations (Fig. 1b) involving 6–8
vertebrae in the trunk region (regions 1 and 2, types
6 and 8; as described by Witten et al. (2009)). The
type of deformities observed on day 264 represented
a different deformity phenotype. This phenotype
consisted of vertebral compressions with different
degrees of ankylosis involving only two or three
vertebral bodies, equivalent to type 5 as described by
Witten et al. (2009). These deformities were
observed at or in proximity to the injection point.
As stated by Fjelldal, Nordgarden, Berg, Grotmol,
Totland, Wargelius & Hansen (2005) and Fjelldal
et al. (2006, 2007, 2009), the vertebral column of
Atlantic salmon displays different patterns of
regional growth suggesting that the observed defor-
mities at the smolt stage and in sea water could result
from different pathogenic mechanisms.

In our experiment, spinal deformities in groups
injected with LPS and PBS ranged between 21%
and 38% independent of the dietary oil source (Fig.
1c). We did, however, observe a dietary effect on
vertebral shape in terms of a lower ratio between the
vertebral length and dorso-ventral diameter in fish
fed vegetable oil compared to the fish fed fish oil. A
low ratio between the length and diameter of the
vertebrae indicates a compressed phenotype and can
be used as an early indicator of ensuing deformity
(Fjelldal et al. 2009). However, the total prevalence
of deformities between Fo and Vo fed fish was
similar within the timeframe of the present exper-
iment. The prevalence and type of vertebral mal-
formations observed in the vertebrae close to the
area of injection in the LPS and placebo groups
(Figs. 1a, c and 2) could have resulted from
mechanical damage caused by the needle or from
hydrostatic tension exerted by the injected solu-
tions. In the present study, inter-vertebral tissue
could have been physically injured during the
injection and may have caused inflammatory-
induced deformities, especially since the prevalence
of spinal deformities in i.p. vaccinated groups was
low. Possibly, the subsequent inflammatory pro-
cesses in the visceral cavity associated with vaccina-
tion (Midtlyng 1996; Berg et al. 2006; Mutoloki,
Alexandersen, Gravningen & Evensen 2008), nor-
mally referred to as vaccine side-effects, did not
represent a risk for spinal deformities under the
present experimental conditions.

The feed supplemented with soybean oil con-
tained a high level of linoleic acid (18:2n-6), a
precursor for AA (20:4 n-6), and different AA/EPA
ratios were achieved between the Vo and Fo diets.
These dietary values correlated with the fatty acid
profile in bone and are consistent with the findings
reported by Watkins et al. (2000) and Berge et al.
(2009) in which linoleic acid was markedly
increased in bone total lipids in the Vo group when
compared to individuals fed Fo. Vegetable oil had
no negative effect on growth, a result in accordance
with Berge et al. (2009), Turchini et al. (2009) and
Izquierdo et al. (2008). In fact, fish fed Vo
presented a higher body weight than the fish fed
Fo at day 46. Similar findings have been reported by
Torstensen et al. (2005). The condition factor was
higher in the Vo group before immunostimulation
at day 47 which may indicate body lipid accumu-
lation. Turchini et al. (2003) observed increased fat
deposition in carcass and fillets of brown trout,
Salmo trutta L., fed Vo compared to Fo fed control
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fish. The low body weight observed in fish injected
with LPS and fed Vo might have been the result of a
rapid fat mobilization as a consequence of LPS
injection-related stress. Stress increases the meta-
bolic rate of fish (Sloman, Metcalfe, Taylor &
Gilmour 2000). Linoleic acid has the capacity to
inhibit the catabolism of cortisol by lymphocytes
and may thus enhance the strength of the cortisol
response (Welker & Congleton 2003).

A systemic pro-inflammatory condition in LPS-
injected and Vo-fed fish was indicated by high
plasma PGE2 levels 52 days after the injection.
PGE2 is an eicosanoid produced by monocytes and
thrombocytes from AA, by the action of the
inducible COX-2 enzyme. PGE2 is involved in a
number of immune responses such as vasodilation,
activation and migration of leucocytes to the site of
inflammation (Fast, Ross & Johnson 2005). PGE2

has also been linked to stress related to diets rich in
linoleic acid (Bell, McVicar, Park & Sargent 1991;
Sloman et al. 2000). Petropoulos et al. (2009)
reported no dietary effects and high individual
variation in plasma AA-derived PGE2 levels after
the substitution of dietary fish oil with a blend
of vegetable oils in three strains of Atlantic
salmon. Low concentrations of circulating PGE2

(<10)9
m) are associated with a normal immune

function and T-cell differentiation, while concen-
trations of PGE2 > 10)8

m are reported to be
immunosuppressive (Kinsella & Lokesh 1990).
High plasma PGE2 levels were observed at 9, 33
and 40 days post-infection in a model of induced
infection with Lepeophtheirus salmonis in Atlantic
salmon, indicating a stress response and the activa-
tion of the immune system (Fast, Muise, Easy, Ross
& Johnson 2006). However, no significant differ-
ences in plasma lysozyme or in total plasma protein
(data not shown) were observed between groups,
indicating no systemic inflammation. There is a
wide individual variation in lysozyme activity in
teleosts (Lie, Evensen, Sørensen & Frøysadal 1989;
Balfry & Iwama 2004). However, the effect of LPS
on the fish immunoresponse seems to depend on
LPS strain, exposure time, dose of the toxin, and
time after exposure, among other factors (Swain,
Nayak, Nanda & Dash 2008), and that may explain
the lack of responsiveness observed in our trial.

The observation that gene expression of COX-2
was higher in fish fed Fo might be explained by a
PGE2-mediated negative feedback mechanism in
the control of prostaglandins through down-regu-
lation of COX-2 in the Vo group (Fast et al. 2005).

It may also be explained by the high EPA (20:5n-3)
content in fish oil, since EPA also serves as substrate
for COX-2 although at a lower priority than AA
(Calder & Grimble 2002). On the contrary, it has
been reported that both PGE2 and PGE3 can
induce COX-2 mRNA expression by using similar
pathways, although in mammals PGE3 seems to be
less efficient in inducing COX-2 gene expression
than PGE2 (Bagga, Wang, Farias-Eisner, Glaspy &
Reddy 2003). In fish, dietary oils rich in n-6 fatty
acids seem to induce over-expression of COX-2,
pro-inflammatory cytokines such as TNF and
IL-1b and other systemic inflammation markers
after pathogen challenge (Montero, Grasso, Iz-
quierdo, Ganga, Real, Tort, Caballero & Acosta
2007). The AA: EPA ratio determines the synthesis
of different series eicosanoids in fish since EPA
competitively inhibits the formation of eicosanoids
from AA (Sargent et al. 1999). That may explain
contradictory results observed in immune parame-
ters in relation to the use of Vo�s in different
experiments (Montero et al. 2007; Mourente,
Good, Thompson & Bell 2007; Bell 2008; Seiers-
tad, Haugland, Larsen, Waagbø & Evensen 2009).
LPS can be a strong immunogenic compound since
both the �O� polysaccharide chain and the core
region of the molecule can act as antigenic deter-
minants (Jakobsen, Gutierrez & Wergeland 1999).
Likewise, LPS is a T-independent antigen and can
directly stimulate B cells to induce an antibody-
mediated immune response without activation of T
cells or development of immunological memories
(Elkins, Stashak & Baker 1989). At the bone level,
gene expression of IgM revealed that bacterial LPS
had a stimulatory effect on the lymphocyte popu-
lation, however, with no effect by dietary oil source.

Matrix metalloproteinase 13 (MMP13) was
assessed as a marker of cartilage degradation in
the spinal samples. The activity of MMPs has been
associated with chronic inflammatory bone diseases
(Hernández, Martı́nez, Tejerina, Valenzuela &
Gamonal 2007) and bone deformities in salmon
(Wargelius, Fjelldal, Grini, Gil Martens, Kvamme
& Hansen 2009). However, no significant
differences in MMP-13 gene expression were found
in our study 52 days after injection. Granulocytic
leucocytes that surrounded the spinal cord and thus
also appeared in the vicinity of the bone of the
vertebral bodies were observed in bone sections
from all experimental groups. Thus, it is difficult to
assess whether any of the experimental treatments
led to an inflammatory condition in bone.
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The present study was designed to investigate the
effects of two different dietary AA/EPA ratios on
the development of LPS-induced inflammation in
Atlantic salmon bone as a risk factor for spinal
deformities. The results of this study suggest that
Vo is not a risk factor for the development of
inflammation-related spinal deformities. At the
same time, we found evidence that localized
injection-related processes trigger a diet-indepen-
dent development of vertebral body malformations.
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