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Abstract

The Ensemble Kalman filter (EnKF) has been applied to a 1-D complex ecosystem model coupled with a hydrodynamic model
of the Ligurian Sea. In order to improve the performance of the EnKF, an ensemble subsampling strategy has been used to better
represent the covariance matrices and a pre-analysis step for correcting the non-normality of the members distribution has been
implemented. Twin experiments have been realized to assess the performance of the developed tool and a real data assimilation
experiment has been conducted to hindcast the ecosystem at the Dyfamed site during the year 2000. Finally the performance of the
EnKF has been compared with a Singular Evolutive Extended Kalman (SEEK) filter with a fixed basis. We conclude that, on one
hand, there is a benefit in using the subsampling strategy and the lognormal transformation with the EnKF, and on the other hand,
this filter presents better performance than the fixed basis version of the SEEK filter. However, it also incurs a large computational
cost.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Models are ideal tools either to clarify the mechan-
isms that control concentrations of tracers or the
functioning of food webs, or to make predictions
about how ecosystems will react to changing environ-
mental conditions. In contrast to well-established
hydrodynamic models, ecosystem model structure and
parameterization are not universal and can largely differ
depending on their purpose. Though biogeochemical
models are highly idealized, they are generally strongly
non-linear, very sensitive to initial conditions, include
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many unknown processes and are burdened with a
surfeit of parameters, so that the predictability of pelagic
systems is limited. In addition, it is impossible to obtain
exhaustive knowledge of marine systems through
observations, because such surveys would be far too
expensive. Consequently, an interesting solution con-
sists merging information from both the model and the
biogeochemical measurements; this is called data
assimilation (DA).

Data assimilation techniques can be used to improve
model performance either by optimizing a reduced set of
model parameters or by correcting the state produced by
the model, both through a variational or a sequential
approach. For operational purposes the combination of
parameters optimization and state estimation is most
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promising, nevertheless in this paper we restrain
ourselves to state estimation via a sequential approach.
Among sequential data assimilation techniques, the
Kalman filter (KF) introduced by Kalman (1960) and
originally devised for linear models, is the most widely
used method. This method has the attractive property
that it not only propagates the state, but also the model
uncertainty. In order to perform DA on non-linear
models, several different implementations of the KF
have been devised: the Extended version (EKF)
proposed by Jaswinski (1970), the Ensemble version
(EnKF) proposed by Evensen (1994) and the Singular
Evolutive Extended version (SEEK) proposed by Pham
et al. (1998). These versions differ notably in the
propagation of the model uncertainty and this has
important bearing on how far the model can deal with
non-linearities and on the computational cost of these
methods. We chose to use the EnKF, because the
ensemble representation of the probability distribution
of the state has the advantage of circumventing the time-
consuming propagation of the error covariance matrix,
and for highly non-linear models, of not relying on the
linearization of the model dynamics. In contrast, the
EnKF has the disadvantage of requiring a great number
of ensemble members to represent correctly the
probability distribution of the state, so that the forecast
step is very time-expensive.

In this paper, we test the performance of the EnKF on
the 1-D coupled hydrodynamic-ecosystem model pro-
posed by Raick et al. (2005) in order to study the
Fig. 1. Representation of the ecosystem model (reprinted from Raick et al., 20
organic flows, dashed arrows for inorganic matter flows and dotted arrows
Carbon (DIC) is considered as a pool, it is not a state variable of the system
seasonal cycle of the biogeochemical processes in the
Ligurian Sea.

The paper is organized as follows: the section
Materials and methods includes a brief description of
the 1-D coupled hydrodynamic-ecosystem model of the
Ligurian Sea in Section 2.1 and a summarized theory of
the EnKF in Section 2.2. The ensemble subsampling
strategy and the Gaussian anamorphosis are respectively
described in Sections 2.2.1 and 2.2.2. Dyfamed data are
presented in Section 2.3 and the error measurement tools
used in this paper are listed in Section 2.4. Our data
assimilation experiments are then presented and ana-
lyzed: the twin experiments in Section 3, the real data
assimilation experiment in Section 4 and the comparison
between the EnKF performance and the SEEK filter
with a fixed basis performance in Section 5. Finally, we
present the conclusion of this work in Section 6.

2. Materials and methods

2.1. The coupled hydrodynamic-ecosystem model

The model used in this paper is the 1-D coupled
hydrodynamic-ecosystem model of the Ligurian Sea
developed by Raick et al. (2005) describing the pelagic
food web of the Ligurian Sea.

The hydrodynamic model is the primitive equations
model, in its 1-D version, developed at the Geo
Hydrodynamics and Environmental Laboratory (Gher)
of the University of Liège. It is a non-linear, baroclinic
05). Each line type represents a kind of flux of matter: solid arrows for
for gas flows. Double arrows represent sinking. Dissolved Inorganic
.
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model which uses a turbulent closure scheme based on
the turbulent kinetic energy and on an algebraic mixing
length, taking the intensity of both stratification and
surface mixing into account (e.g. Nihoul and Djenidi,
1987; Delhez et al., 1999). Reduced to its vertical
dimension, it contains five state variables: two compo-
nents of horizontal velocity, the temperature, the salinity
and the turbulent kinetic energy. The Gher 1-D
hydrodynamic model is described in Lacroix and
Grégoire (2002), to simulate the Frontal experiments
conducted in the Ligurian Sea from 1984 to 1988. For
the Dyfamed experiments of year 2000 (see Raick et al.,
2005), the model is forced at the air–sea interface by
meteorological data coming from the Côte d'Azur
meteorological buoy.

The ecosystem model contains nineteen state vari-
ables describing the carbon and nitrogen cycles of the
pelagic food web. Phytoplankton and zooplankton are
both divided in three size-based compartments and the
model includes an explicit representation of the
microbial loop including bacteria, dissolved organic
matter, nano- and microzooplankton. The internal C:N
ratio is assumed variable for phytoplankton and detritus,
Fig. 2. The EnKF methodology (redrawn
and constant for zooplankton and bacteria. Silicate is
considered as a potential limiting nutrient of phyto-
plankton's growth. A schematic representation of the
ecosystem model is shown in Fig. 1.

The physical and biological models are coupled off-
line. Simulations with the hydrodynamic model are
performed and then temperature and turbulent diffusion
coefficient profiles are stored. After that, the biological
model is integrated by the subroutines library Femme, a
Flexible Environment for Mathematically Modelling the
Environment developed by Soetaert et al. (2002) and
designed for implementing, solving and analyzing
mathematical models in ecology.

The depth of the vertical domain is 400 m with a
zero-flux lower boundary, such that all the organic
matter produced in the euphotic layer by primary
production is remineralized in the modeled domain. In
this way the model is fully conservative. The vertical
mesh has an exponential scale in order to take into
account the higher variability of the ecosystem in the
upper layers. Integration is done using the Euler explicit
method with a constant time step of 45 min, except for
turbulent mixing which is solved with an implicit
from Eknes and Evensen, 2002).
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method. The ecosystem is presented in detail in Raick
et al. (2005) and validated against the Dyfamed data of
year 2000, presented in Section 2.3.

2.2. Ensemble Kalman filter

The EnKF method was formulated by Evensen (1994)
in order to resolve some problems accounted with non-
linear operators. Instead of calculating the Jacobian of the
model operator to propagate the model uncertainty as in
the EKF, here the error covariance matrix is derived from
an ensemble representation of the state probability
distribution. According to us, the two main reasons for
using ensemble methods are that (1) they circumvent the
time-consuming propagation of the error covariance
matrix and the calculation of the model operator and (2)
for highly non-linear models, they do not rely on the
linearization of the model dynamics and may therefore
represent better the model statistics. However, as shown
by van Leeuwen and Evensen (1998), the analysis scheme
of all Kalman filters relies on the assumed normality of the
probability density function used to derive the optimum
state, by minimization of a penalty function. For non-
linear systems this assumption is of course invalid and we
propose a remedy to this problem in Section 2.2.2.
Besides, there is another problem inherent to all filters: the
non-linearity of the observation operator. Evensen (2003)
proposed a solution that consists in augmenting the model
state vector with a diagnostic variable which is the model
prediction of the measurement. Under these assumptions,
it is the statistical noise that dominates the errors in the
EnKF, and there are no closure problems or unbounded
error variance growth, as have been found with
assimilation methods relying on the use of a tangent
linear model.

The EnKF integrates an ensemble of model states
forward in time using the model equations. Usually the
number of members N is of the order of 102, whereas the
state vector size n is of the order of 105 for a 3-D model;
in our 1-D model case n=1900. During the forecast
step, each individual member is integrated using a
stochastic differential equation, i.e. forced with a
random noise component which represents the stochas-
tic model error (Eq. (1) in Fig. 2). It can be shown that
such ensemble integration becomes identical to a
Markov Chain Monte Carlo method for solving the
Fokker–Planck equation for the evolution in time of the
probability density of the model state (Evensen, 1994).
Since the non-linear dynamics model is used, during the
forecast, the only approximation associated with this
approach is that a finite number of members are used in
the ensemble. Integration in time is performed until
measurements are available. At these time instants, an
analysis scheme is used to update or correct the model
state in a statistically consistent way, i.e. by minimizing
the error variance of the analyzed estimate in a least
square sense, considering the measurements, the model
forecast and their respective error statistics (Eqs. (2) and
(3) in Fig. 2). At the analysis steps, another approxima-
tion exists: the assumption of a Gaussian distribution of
the ensemble states. A schematic illustration of the
algorithm is given in Fig. 2 and described in the next
paragraph. Further details about the EnKF implementa-
tion and its applications can be found in Allen et al.
(2002), Bertino et al. (2003), Brasseur (2005), Burgers
et al. (1998), Eknes and Evensen (2002) and Evensen
(2004).

In the initialization phase, a first guess model state is
perturbed to create an ensemble of N initial members
xj
ini as explained in Appendix A. Then, these perturbed
model states are integrated forward in time with the
model dynamics, expressed by means of a non-linear
model operator M and a random noise component dq
representing the stochastic model error. When a first
observation set becomes available, each of the model
forecasts xj

f is corrected. During this analysis step, a new
ensemble of analyzed model states xj

a is computed
(Eq. (2) in Fig. 2) based, (1) on the prior model state xj

f,
(2) on the measurements ȳ , related to the true model
state xt through ȳ =Hxt +εo, where H denotes the
observation operator (which can possibly be non-linear
and then denoted H), εo the observational error and xt

the true state, and (3) on the so-called Kalman gain
matrix Ke ∈ Rn�m (Eq. (3) in Fig. 2), denoting the
degree of correction of the model state at the analysis.
This matrix Ke is estimated based on the error
covariance matrix of the model forecast state
Pf
e ∈ Rn�n (Eq. (4)) and the observational error

covariance matrix Re ¼ EET

N−1 ∈ Rm�m where E ¼
ð∊1∊2 N ∊N Þ ∈ Rm�N is the ensemble of observational
errors εj combining the instrumental error εj

o and the
noise added to generate an ensemble of observations.
The Kalman gain can be interpreted as the ratio between
the error variance of the forecast and the total error
variance projected in the observation space. In the limit
of perfect observations (Re∼0) of the whole state, the
Kalman gain matrix converges to the inverse of the
observation operator and the correction will completely
follow the data. In contrast, for an extremely accurate
model forecast (Pe

f∼0) the correction is negligible.
After this step, the ensemble of analyzed states is

integrated forward until new observations become
available and the process is repeated again. At all time
step, the EnKF estimate is defined as the ensemble mean.



Fig. 3. Spectrum of the normalized singular values of the initial
ensemble.
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Let us now introduce two modifications of the EnKF
that we test in this work: the Gaussian anamorphosis and
the ensemble subsampling strategy. According to our
knowledge, these techniques haven't been implemented
simultaneously on a complex ecosystem model yet, so
this is what we propose to do.

2.2.1. Ensemble subsampling
As said previously, ensemble is used to represent the

probability distribution of the state and all statistics
derived from it; especially the mean state and the model
variability. In order to improve this representation with a
restrained number of members, we adopt the ensemble
subsampling strategy proposed by Evensen (2004). In
the EnKF scheme, the exact error covariance matrix P at
the forecast and analysis steps is approximated by its
ensemble representation

PfPe ¼ AVAVT

N−1
aRn�n; ð4Þ

where A′ is the ensemble of model state perturbations,
obtained by subtracting the mean ensemble state x̄
from each member xj of the ensemble A. If we perform
the singular value decomposition of A′=UΣVT and
consider the eigenvalue decomposition of P=ZΛZT,
then

P ¼ ZKZT ð5Þ

Pe ¼ USVTVSUT

N−1
¼ US2UT

N−1
; ð6Þ

where U ∈ Rn�n and V ∈ RN�N contain respectively
the left and the right singular vectors of AV;S ∈ Rn�N

its singular values, Z ∈ Rn�n the eigenvectors of P and
K ∈ Rn�n its eigenvalues. When the number of
members N tends toward infinity, the n singular vectors
in U will converge toward the first n eigenvectors in Z,
and the square of the singular valuesΣ2 divided byN−1
will converge toward the eigenvalues Λ.

This shows that a good approximation Pe of P is
obtained either by increasing the ensemble size N, thus
increasing the size of the hyperspace spanned by the
members, or by thoroughly choosing the members of the
ensemble as the N dominant modes. These N modes are
obtained by selecting among βN members, β being an
integer larger than 1, those corresponding to the N
largest singular values. The latter technique is the
ensemble subsampling strategy described in details in
Evensen (2004). Hence, given an initial estimate of P,
e.g. from a previous run, we can drastically reduce the
size of an ensemble, that provides a good representation
Pe of P, thanks to this strategy.
In our experiments, the ensemble subsampling has been
used to select the N initial members Aini = (x1

inix2
ini … xN

ini).
Besides, Burgers et al. (1998) suggested also to create an
ensemble of measurements D ¼ ðy1y2 N yN Þ ∈ Rm�N in
order to avoid underestimating the ensemble variance at
the analysis step. Thus, we have subsampled the ensemble
of observations D generated according to Eq. (A.2), to get
the best possible ensemble representation Re of the
observational error covariance matrix R. This improved
sampling strategy might be more important for a model
with a larger state space; in typical 3-D data assimilation
experiments the state vector size isOð105Þ, as for example
in Natvik and Evensen (2003), in our 1-D experiments the
state vector size is only 1900.

We present in Fig. 3 the normalized singular values
of the initial ensemble of normalized perturbations Â′ini

(N=100) obtained without subsampling and by using
subsampling from starting ensembles of different sizes
(βN=300, 500 and 1000). We clearly see that the
conditioning of Â′ini is improved when a larger starting
ensemble is used: the inverse of the condition number
(i.e. the ratio of the smallest singular value to the largest
one) is proportional to β. The presence of a tiny 100th
singular value for the curve without resampling comes
from the removal of the ensemble mean during the post-
treatment, making the matrix columns linearly depen-
dent. Because we have only plotted the first 100 singular
values of the spectrum for the larger ensembles, the very
small last singular value of each of them does not appear
in Fig. 3.

2.2.2. Gaussian anamorphosis
Applying Kalman filters to biogeochemical models

must be done carefully: on one hand, the state vector has
to be physically consistent to be further propagated by
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the model (e.g. negative concentrations are totally
unrealistic) and on the other hand, state and observation
vectors have to be multivariate normally distributed
variables for optimal use of the linear statistical analysis.
The latter requirement is rarely encountered when the
model used is non-linear. One solution is the Gaussian
anamorphosis.

Let us consider two distinct but related variables, the
original ones x being physically consistent and the
transformed ones x̃ suitable for linear estimation, linked
to each other through x̃ =ψ(x), where ψ is the
anamorphosis function, which converts the original
variables x into normally distributed ones x̃. This is
obviously less constraining than expecting the same
variable to fulfill both physical and statistical require-
ments. Similarly, we also introduce an anamorphosis
function χ for the observations ỹ=χ(y). In this way, the
observation operator H becomes

H̃ ¼ v∘H∘w−1; ð7Þ

where ∘ denotes a Hadamard product (component by
component product). If we group the transformed state
vectors x̃ and the transformed measurement vectors ỹ in
matrices Ã and D̃ respectively, we can write Ãa=Ãf +K̃e

(D̃−H̃Ãf), with K̃e= P̃e H̃
T(H̃P̃eH̃

T+ R̃e)
−1. This is the

exact copy of the EnKF analysis step, except that all
matrices are tilded, meaning that they have been computed
Fig. 4. Distribution of the state variables obtained by an ensemble assi
with the multivariate normally distributed variables (as
opposed to the physical ones). Once the correction is
achieved, we transform back the variables according to
x=ψ−1(x̃). The physically consistent variables obtained by
this process are the samples of a probability density
function from which we can directly draw unbiased
statistics, so that no extra computation is required to take
the mean, the standard deviation or other statistics of the
ensemble. In order to simplify the procedure, we make the
assumption that the variables at different locations are
identically distributed, so that the anamorphosis function
used is the same all over the spatial domain.

2.2.2.1. Distribution of the forecast state variables.
The distribution of the forecast state variables is exempli-
fied in Fig. 4 at different times (i.e. at days 100, 150 and
200) and depths (i.e. at 0.5 m, 10 m and 95 m) through the
histograms of the forecast members (i.e. CPhy1, CPhy3,
NPhy3, Czoo3 and SiOs) during an assimilation run. The
number of ensemble members for this run is 150.

We can observe that CPhy1 is approximately
normally distributed in the whole water column at day
100, and that the contents in carbon and nitrogen of the
third group of phytoplankton at day 150 have very
similar distributions, more lognormal than normal near
the surface and at 95 m and left-tailed at 10 m depth. We
see an analogous tendency for CZoo3, whereas the SiOs
is normally distributed in the three chosen layers. These
milation run (see Fig. 1 for the definition of the state variables).



Fig. 5. Assumed distribution of some variables measurements obtained by a Monte Carlo simulation.
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few examples illustrate that, in practice, the spatial
homogeneity hypothesis is rarely respected.

2.2.2.2. Distribution of the observations. As we
cannot use multiple measurements for estimating the
Fig. 6. Distributions of the Box–Cox transfo
probability density function of the measurements, we can
use a Monte Carlo simulation. Though this method is not
perfect, it can be useful when one has no idea at all about
the measurements distribution. We propose in Fig. 5 the
histograms of each variable, taken at observation points,
rmed CPhy3 at 0.5 m depth variable.



Fig. 7. Location of the Dyfamed site (43°25′N, 7°52′E), reprinted from
Marty and Chiaverini (2002).
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resulting from a total of 1000 runs realized by perturbing
the most sensitive parameters identified in Raick et al.
(2005) (±10% around the calibrated value). We see that
phytoplankton observations (especially the third group,
which represents the diatoms) as well as nitrate and
silicate observations are more lognormally than normally
distributed, whereas totally different distributions charac-
terize the other measurements.

2.2.2.3. Box–Cox transformations. We now propose
an automatic and objective procedure to check whether or
not one should proceed to a transformation of the forecast
variables or of the observations, before the analysis step.
First, we compute, for each layer, the correlation
coefficient Rx or y between the original variables x or
observations y and a normal distributionN ð0;1Þ, all sorted
in ascending order (cumulative density function); sec-
ondly we estimate the correlation coefficient R x̃ or ỹ
between the transformed variables x̃or observations ỹ and
the same normal distribution. Finally, we compare space-
averaged values and adopt the transformation giving the
highest correlation. Interesting trial functions are the
Box–Cox transformations

x̃k ¼ xk−1
k

for k p 0 ð8Þ

¼ ln x for k ¼ 0: ð9Þ

These functions are conservative (no loss or gain of
matter when variables are back-transformed) but restrict-
ed to only positive values. We present in Fig. 6 the
distribution of the ensemble forecast CPhy3 variable and
the histograms corresponding to its transformations
according to various values of parameter λ. The y-axis
label is the correlation coefficient between the considered
original or transformed variable and a normal distribu-
tion. We see that, at this depth, a lognormal transforma-
tion already improves the normality of the distribution,
although the difference between the correlation coeffi-
cient values is not large (about 2%). Note that for the
assimilation runs realized for this work, we restrain
ourselves to the case λ=0, i.e. the lognormal transfor-
mation. However, by examining some forecast ensembles
(see Fig. 6), we see that the extension of the algorithm to
other cases ðk ¼ s ∈ RÞ could be beneficial.

2.2.2.4. Lognormal distribution. We propose to gen-
erate the initial members xj

ini and the perturbed
measurements yj of the lognormal-labeled variables
and observations in a way that differs from the usual
addition of a pseudo random normal field to the best
guess estimate, as presented in Appendix A. Hence, the
jth member of the sampled ensemble is given by

mðzÞlog; j ¼ expðllogðzÞ þ rlogðzÞN ð0;1ÞjÞ: ð10Þ

Consider you know the best guess estimate of the
distribution (i.e. a prescribed mean μ) and the uncertainty
on this best guess estimate (i.e. a prescribed standard
deviation σ). In order to build a lognormal distribution,
from which we can derive the statistics parameters μ and
σ, by computing respectively its mean and its standard
deviation, we have to defineμlog (z) andσlog (z) of Eq. (10)
as follows: llogðzÞ ¼ lnlðzÞ− 1

2 ln 1þ r2

l2

� �
and rlogðzÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln 1þ r2
l2

� �r
. Under the assumption of a lognormal distri-

bution of both state variables and observations, the
transformed observation operator is given by H̃=ln (exp
(H))=H.

2.3. Data

A large data base including biological, physical, chemi-
cal and meteorological data is available for the Ligurian
Sea. Since 1991, the time-series programDyfamed (DYna-
mics of atmospheric Fluxes in the MEDiterranean sea)
recordsmeasurements in a selected site in the central part of
the Ligurian Sea, shown in Fig. 7, in order to study the
response of the ecosystem to climate variability and anthro-
pogenic inputs. The Dyfamed program has been organized
in the scope of the French-JGOFS (Joint Global Ocean
Flux Studies) program (Marty, 2002). The existence of this
large data base and the particular hydro-dynamic conditions
with moderate horizontal advectionmake the Dyfamed site
an ideal test area for performing 1-D modeling studies.
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Nutrients (nitrite, nitrate, silicate and phosphate) profiles
are described in detail in Bethoux et al. (1998, 2002).
Temperature and salinity data are presented in Marty et al.
(2002). Abundance and biomass of free-living bacteria,
heterotrophic nanoflagellates and ciliates are described in
Tanaka and Rassoulzadegan (2002) and Tamburini et al.
(2002). A range of pigments have been detected, in order to
characterize different phytoplankton groups (e.g. Vidussi
et al., 2000, 2001;Marty et al., 2002;Marty andChiaverini,
2002). Particulate organic matter, in carbon and nitrogen
have also beenmeasured.We have chosen particularly year
2002 for the calibration and the validation of the coupled
model because of the data availability during this year. Data
have been monthly recorded (11 dates) at 12 water depths
between 0 and 200 m depth (5 m, 10 m, 20 m, 30 m, 40 m,
50 m, 70 m, 90 m, 110 m, 130 m, 150 m and 200 m):
pigments of chlorophyll which provides information about
the three phytoplankton groups, nutrients and detritic
matter. Nanoflagellates (Zoo1 group), ciliates (Zoo2 group)
and bacteria have been measured every month from May
1999 to March 2000: three profiles of these variables are
available for the year 2000. No information about the errors
on data measurements are available. This is actually the
reason why we propose to determine the observations dis-
tribution by a Monte Carlo simulation in the previous
subsection. All data are available through the Dyfamed
Observatory data base : http://www.obs-vlfr.fr/jgofs2/
sodyf/home.htm.

2.4. Assessing the model error

When the correspondence between two fields has to
be quantified, Taylor (2001) has shown that some
different but complementary statistical information (the
standard deviation, Root-Mean-Square difference and
correlation coefficient) can be considered and summa-
rized in a single plot, the Taylor diagram. We briefly
explain this error measurement tool in Appendix B.

In addition we also compute the evolution in time of
the space-averaged RMS error and the time-averaged
RMS error profile. If we denote by fi,j the forecast and by
ri,j the reference fields defined at a given point of the
vertical domain (the ith layer) and at a given time (the jth
day), the previous quantities are respectively given by

RMSsj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNz

i¼1

dzi
D

ð fi;j−ri;jÞ2
s

; j ¼ 1; 2; N ;Nt ð11Þ
RMSti ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNt

j¼1

dtj
T

ð fi;j−ri;jÞ2
s

; i ¼ 1; 2; N ;Nz: ð12Þ
where Nz is the number of discrete points in space, Nt the
number of discrete points in time, dzi the thickness of the
ith layer, dtj the jth time interval, D=Σi=1

Nz dzi the size of
the spatial domain and T=Σj=1

Nt dti the duration of the
simulation. We also compute the time evolution of the
RMSj

ens, which provides an estimate of the error that the
filter makes on the state at forecast and analysis steps:

RMSensj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNz

i¼1

dzi
D

r2i

s
; j ¼ 1; 2; N ;Nt; ð13Þ

where the σi
2 are the diagonal elements of the ensemble

representation of the error covariance matrix. If the
analysis is done properly the predicted RMSens and the
actual RMSs should be of the same order of magnitude.

3. Twin experiments

3.1. Twin experiments strategy

Traditionally one performs twin experiments in order to
determine the experimental DA protocol (e.g. the
assimilation time frequency atf, the ensemble size enssize,
the nature of the observed and corrected variables,
respectively natobs and natcor) that should be used to
assimilate real observations data. For this purpose,we run a
reference simulation, considered as the true solution of the
system and which is obtained by perturbing the final state
of the spinup solution of the model. Perturbation is done
according to Eq. (A.2) with a relative standard deviation of
10%. From this run we extract pseudo-observations that
are assimilated in an EnKF run. The EnKF is initialized
with the annual mean profile of the reference simulation as
the best guess estimate used to create the members of the
ensemble Aini. This is done in the same way as the initial
state of the reference run was created from the spinup final
state. We take into account the model uncertainty by
perturbing everyday the state variables according to Eq.
(A.1), but with a standard deviation corresponding, for
each variable and at each depth, to 3% of the annual mean
profile of the reference run. In parallel to the EnKF run, we
also run an uncorrected simulation, which propagates the
same ensemble members without DA. This simulation
gives an estimate of the uncorrected state and allows to
measure the benefit of data assimilation. As precised
previously, in order to avoid underestimating the ensemble
variance at the analysis step, we also generate an ensemble
of observations D according to Eq. (A.2) and with a
relative standard deviation σobs=30%. Thus, our twin
experiments are pretty close to real DA experiments, in
which the uncertainty on the measurements is sometimes
quite important.

http://www.obs-vlfr.fr/jgofs2/sodyf/home.htm
http://www.obs-vlfr.fr/jgofs2/sodyf/home.htm
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We perform several test cases by changing some of
the twin experiment parameters and for each of them we
measure the error in the different ways presented in
Section 2.4. In Table 1 are the different test cases and
their respective parameters values. Because we have a
complete reference field (i.e. a value at every time step
and in every layer), we can use it and the complete fields
resulting from the assimilation runs to compute the error
statistics; obviously this can not be done in real data
assimilation experiments.

3.2. Twin experiments results

3.2.1. Nature of the observed variables impact — T1
The nature of the variables that we should observe to

get the best state estimate is a decisive issue. As said in
Section 2.2, one of the fundamental hypotheses of the
original KF theory is the linearity of the model and
observation operators. The EnKF can be applied to non-
linear models but does not solve the problem of using a
non-linear observation operator H, unless the technique
proposed by Evensen (2003) and mentioned in Section
2.2, though not used in this work, is implemented in
your filter. As shown in Raick et al. (2005), in this model
we don't use fixed Chl:C and Chl:N ratios, so that if we
want to assimilate phytoplankton in chlorophyll units
Table 1
Twin experiments combination of parameters for each test case

Twin experiments: test cases

Study type Test ID natobs natcor atf asf enssize

natobs T1A PC PC, PN, ZC 30 10 100
T1B PN PC, PN, ZC 30 10 100
T1C ZC PC, PN, ZC 30 10 100
T1D PC, PN PC, PN, ZC 30 10 100
T1E PC, PN, ZC PC, PN, ZC 30 10 100

natcor T2A PC PC 30 10 100
T2B PN PN 30 10 100
T2C ZC ZC 30 10 100

atf T3A PC, PN, ZC PC, PN, ZC 100 10 100
T3B PC, PN, ZC PC, PN, ZC 50 10 100
T3C PC, PN, ZC PC, PN, ZC 5 10 100

asf T4A PC, PN, ZC PC, PN, ZC 30 100 100
T4B PC, PN, ZC PC, PN, ZC 30 25 100

enssize T5A PC, PN, ZC PC, PN, ZC 30 10 150
T5B PC, PN, ZC PC, PN, ZC 30 10 300

with PC=CPhy1, CPhy2, CPhy3,
PN=NPhy1, NPhy2, NPhy3,
ZC=CZoo1, CZoo2, CZoo3,
natobs is the nature of the observed variables,
natcor is the nature of the corrected variables,atfis the

assimilation time frequency and is expressed in days,
asf is the assimilation space frequency and is expressed in

boxes,
enssize is the number of members constituting the ensemble.
such a non-linear operator should be used; therefore we
will restrain our observations to measurements that are
linearly linked to the state variables, avoiding a source
of errors for the assimilation process. In these test cases,
we correct nine state variables (the carbon and nitrogen
components of the three groups of phytoplankton and
the carbon component of the three groups of zooplank-
ton) with a composition of the observation vector that
varies (test cases T1A, T1B, T1C, T1D and T1E).
However, in real data assimilation experiments, we are
limited by the diversity of the variables observed, thus
we do not often have the choice of which variables to
observe.

We have plotted in Fig. 8 the time-averaged RMSt

errors profiles (Eq. (12)) of some integrated variables,
derived from state variables as follows: CPhy=Σi=1

3

CPhyi, CZoo=Σi=1
3 CZooi, Nut=NO3+NH4+SiO2,

DOM=DOC+DON and POM=POC+PON+SiPOM
(see Fig. 1). As we can see, the most positive impact of
the assimilation is obtained in the test case T1E, where
the composition of the observation and estimation
vectors are identical. We also see that the zooplankton
and the detritic organic matter are not very sensitive
neither to the assimilation process, nor to the nature of
the observed variables. For phytoplankton, the obser-
vation of zooplankton alone (T1C) does not improve
significantly the results, whereas the observation of
carbon or nitrogen content of phytoplankton (respec-
tively T1A and T1B) reduces the errors very similarly,
so that the curves are nearly superimposed. Unfortu-
nately for the real data assimilation experiment, we do
not have measurements for zooplankton concentrations
all along the year, so that we choose the test case T1D
(observation of CPhy1,2,3 and NPhy1,2,3), as the
reference twin experiment.

3.2.2. Nature of the corrected variables impact — T2
We now focus on determining which variable, by its

correction, has the most useful impact on system
dynamics. As opposed to experiments T1, in T2 test
cases we only correct the variables that we observe. We
present in Fig. 9 the space-averaged RMSs error (Eq.
(11)) for the integrated variables CPhy, CZoo, Nut,
DOM and POM of the model in T2A, T2B, T2C and
T1D experiments. We note that the variables that mostly
benefit of data assimilation are the carbon content of
phytoplankton and the nutrient pool. Before we take a
look at the T2 curves, it is worth noting that the T1D
experiment (natobs=PC, and PN, natcor=PC, PN and ZC)
gives the smallest RMSs error for all variables
represented in Fig. 9. The correction of only PC (T2A)
is the best choice of assimilation protocol among the T2



Fig. 8. Twin experiments T1: influence of the composition of the observation vector— Time-averaged RMSt errors in the whole water column for the
variables CPhy, CZoo, Nut, DOM and POM.
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experiments. It especially improves the results for the
phytoplankton and the nutrients. Observation and
correction of PN or ZC just slightly improve the results
for phytoplankton but actually do not differ that much
from the uncorrected run for the other variables. These
results exhibit the importance of a correct representation
of phytoplankton in carbon in the system; actually
carbon is the main element of this ecosystem model.
Phytoplankton primary production and nutrient uptake
are decoupled and nutrients can be internally stored by
phytoplankton. Because of these storages, the nutrient
content of the phytoplankton cell does not reflect the
instantaneous performance of the cell, in contrast to the
internal content in carbon that can not be stored. This is
why assimilating only phytoplankton biomass in
nitrogen and letting the system dynamics update the
other variables does not allow to converge to the
reference solution (see Raick et al., 2005).

3.2.3. Assimilation time frequency impact — T3
We clearly see the key role played by the atf in

Fig. 10, where we present the RMSs and RMSt

differences (Eqs. (11), (12)) averaged on the main
state variables of the model (CPhy1,2,3, NPhy1,2,3,
CZoo1,2,3, CBac, NOs, NHs, DOC, DON, CPOM and
NPOM). The more often we assimilate data, the better
the results. The assimilation time frequency is obviously
limiting in a real biogeochemical data experiment,
because biological surveys are generally not automatic,
except for surface chlorophyll concentration that can be
estimated through the use of satellite data. Nevertheless,
we note that assimilating data every 30 days (T1D), as
can be done in a real DA experiment, already yields a
significant reduction of the RMS errors. The difference
with T3C (every 5 days) is hardly visible on the RMSt

plot, confirming that an every 30 days DA protocol is a
good choice for operational use.

3.2.4. Assimilation space frequency impact — T4
The importance of the asf can be seen in Fig. 11,

where we present the mean RMSs and RMSt differences
(Eqs. (11), (12)) (see Section 3.2.3), for the test cases
T4A, T4B and T1D. The more data we assimilate, the
better the results; nevertheless we see that the
assimilation of surface data (T4A), as satellites can
provide, already significantly improves the model state
estimation. In a real DA experiment, as well as the atf,
the asf is also limiting, because of the necessity of
human intervention to collect the biological measure-
ments. We see that assimilating data every 10 boxes
(T1D), which approximately corresponds to the spatial
repartition of the observations at the Dyfamed site for
the year 2000 (Section 2.3), reduces significantly the
RMS errors.



Fig. 9. Twin experiments T2: influence of the composition of the estimation vector — Space-averaged RMSs errors along the year for the variables
CPhy, CZoo, Nut, DOM and POM.
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3.2.5. Ensemble size impact — T5
As we suppose intuitively, the use of a larger

ensemble improves its representation and thus the
statistics that we can derive from it (e.g. the mean, the
(co)variance). Unfortunately, representation improve-
Fig. 10. Twin experiments T3: influence of the assimilation time frequency—
the main state variables.
ment is proportional to the square root of the number of
members, whereas the computational load is directly
proportional to the number of members, so we have to
make the best possible compromise. For these one-year
simulations, we choose a 100-member ensemble
Space-averaged RMSs (left) and time-averaged RMSt (right) errors for



Fig. 11. Twin experiments T4: influence of the assimilation spatial frequency— Space-averaged RMSs (left) and time-averaged RMSt (right) errors
for the main state variables.
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because of its good performance in relation to its
relatively affordable cost. Actually, the decrease of the
RMS difference for the whole run with a larger
ensemble was minor to the square root of the ensemble
size; this confirms our choice of a 100-member
ensemble.

We present in Fig. 12 on one hand, the space-
averaged RMSs (Eq. (11)) error and on the other hand,
the absolute difference between the predicted RMSj

ens

(Eq. (13)) and the actual RMSs errors for the variable
CPhy2, the dominant variable of the model. We see that
the larger the ensemble, the lower both errors, and also
the nearer to the actual error is the forecast error. The
Fig. 12. Twin experiments T5: influence of the ensemble size— Space-averag
RMSens errors (right) for the dominant variable CPhy2.
large difference between the predicted and the actual
errors at first time steps comes from the fact that the
standard deviation prescribed to initialize the ensemble
around the annual mean profile is lower than the
difference between this profile and the reference run.

3.2.6. Comparison between the classical EnKF and our
implementation

In Sections 2.2.1 and 2.2.2, we have presented two
tools used to improve the classical version of the EnKF,
Evensen's ensemble subsampling strategy and the
lognormal transformation. Here we show compara-
tive plots of the classical and the enhanced EnKF
ed RMSs error (left) and absolute difference between the RMSs and the



Fig. 13. Comparison between the classical EnKF and our implementation — Space-averaged RMSs (left) and time-averaged RMSt (right) errors for
the main state variables.
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performances when applying the T1D data assimilation
protocol. Though the difference is not huge, the results
obtained by the EnKF with the two adapted tools are
better than the ones obtained with the original
implementation of the EnKF, especially during the
spring bloom period (see Fig. 13). As already mentioned
in Section 2.2.1, the subsampling strategy would have a
more positive impact for a model with a larger state
vector.

So, if the a priori task of determining whether the
variable is lognormally distributed has already been
Fig. 14. Adimensionalized Taylor diagram: comparison between the uncorr
phytoplankton variables (Phy1,2,3Chl) in chlorophyll, the bacteria (CBac),
organic matter in carbon and nitrogen (CPOM and NPOM), nitrate (NOs) a
performed, or if an automatic procedure to assess the
probability distribution is implemented, there is no
reason not using the Gaussian anamorphosis. The
ensemble subsampling strategy can be recommended
in all cases, as long as the computational cost of the
singular value decomposition is affordable. It improves
the state estimate as well as the error variance estimate.

3.2.7. Conclusions of the twin experiments
The twin experiments have been performed to deter-

mine a suitable data assimilation scheme in order to
ected run and the assimilation protocol T1D run for the 3 groups of
the two smaller groups of zooplankton (CZoo1,2) and the particulate
nd silicate (SiOs).
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assimilate real data observations. The selected protocol
is the T1D: we observe the contents in carbon and
nitrogen of the 3 groups of phytoplankton (natobs=PC
Fig. 15. Real data assimilation experiment results: comparison between the p
and PN) and correct, in addition to these variables, the
content in carbon of the 3 groups of zooplankton
(natcor=PC, PN and ZC), with an assimilation time
rofiles of the free run, the EnKF run (analysis) and the Dyfamed data.
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frequency of 30 days (atf=30) and an assimilation space
frequency of 10 boxes (asf=10), which correspond
approximately to the time and space frequencies
available for the data at the Dyfamed site. We use a
100-member ensemble (enssize=100) and a relative
standard deviation of the observational error of 30%
(σobs=30%). We present in Fig. 14 the adimensionalized
Taylor diagram obtained by comparing both the
uncorrected run and the test case T1D to the reference
run. The Taylor diagram, defined in Sections 2.4 and
Fig. B.1, is used to visualize the improvements in terms
of RMS errors and correlation coefficients. Each point on
the diagram represents, for one particular variable, the
statistical analysis averaged over the entire one-year
simulation. The largest improvements are made for the
phytoplankton groups and the silicate. Neither nitrate,
nor bacteria changed a lot with the data assimilation.

4. Real data assimilation experiments

The year 2000 was chosen for the real data
assimilation experiment (natobs=PC and PN, natcor=PC,
PN and ZC and enssize=100) because of the availability
of the data and the possible comparison with the work of
Raick et al. (2005). We have used the Dyfamed data
base presented in Section 2.3. Phytoplankton pigments
of each phytoplankton group have been converted in
carbon biomass using the Chl:C(z,t) ratio extracted from
a converged model simulation (Raick et al., 2005) in
order to avoid errors and non-linearities due to the units
conversion. Because of the lack of information about the
observational errors, we consider for each variable and
at each depth, a relative standard deviation of 30% of the
recorded value. Note that for the corrected and the
uncorrected runs, we start from the same set of initial
conditions, which is the state of the system at the end of
the one year converged simulation.

In Fig. 15 the profiles for the free run and the EnKF
run of the chlorophyll content for the 3 groups of
phytoplankton, nitrate, silicate and the particulate
organic matter contents in carbon and nitrogen, at
assimilation dates all along the year, as well as the
profiles of the carbon content of bacteria and the 2 groups
of zooplankton for which we have observations, at
assimilation dates during the first 3 months of the year.

An inspection of the profiles shows that the first real
improvement of the EnKF run in comparison to the free
run happens in late March. At this moment, the data
assimilation allows estimating accurately the chloro-
phyll concentration of the phytoplankton groups Phy1
and Phy2, as well as the carbon content of the bacteria
and the two groups of zooplankton Zoo1 and Zoo2, and
nitrate. The EnKF run slightly overestimates Phy3,
whereas the free run underestimates it. In April and
May, we still have a good estimation of the first 2 groups
of phytoplankton, whereas the Phy3 group is largely
overestimated; we also note a small improvement of the
results for SiO2 during these months. During the rest of
the year, the free run and EnKF run phytoplankton
profiles hardly differ, except for Phy1 and Phy2 in
September and Phy3 in December, which are improved
by the observation and correction through the filter.
From April to December the EnKF run and the free run
nitrate profiles are not distinguishable. The SiO2 is
mainly underestimated in the EnKF from the beginning
of summer until the end of the year due to the increase of
CPhy3 in March. The particulate organic matter
contents in carbon and nitrogen from the EnKF run do
not sensitively differ from the ones obtained during the
uncorrected run.

In Fig. 16, we show the RMSs and RMSt

corresponding to the uncorrected and to the corrected
runs. For phytoplankton groups, we see that the forecast
does not largely improve the results, in opposition to the
analysis, which has generally a smaller RMSs than the
uncorrected run. The contribution of the data assimila-
tion experiment to the estimation of nitrate and
particulate organic matter contents in carbon and in
nitrogen are not significant. Silicate is better estimated
during winter and spring but worse during the rest of the
year. For bacteria and zooplankton groups, results are
improved by the EnKF run in March but we only have
data for the first 3 months of year 2000. By inspection of
the RMSt profiles we see that the assimilation of the
biological measurements is quite beneficial for Phy1 and
Phy2, whereas the error on Phy3 is larger than the one
obtained by an uncorrected run. For the other variables,
we note a small general improvement of the results given
by the EnKF, in comparison to the free run results.

5. Comparison with the SEEK filter

We finally compare the real data assimilation
experiment performed by the EnKF and by a SEEK
filter with a fixed basis (Raick et al., in press). For each
filter, we choose its best assimilation protocol, i.e. the
T1D test case for the EnKF (observation of CPhy1,2,3
and NPhy1,2,3; correction of CPhy1,2,3, NPhy1,2,3 and
CZoo1,2,3; ensemble of 100 members and relative
standard deviation of the observational error of 30%) and
for the SEEK filter we observe and correct CPhy1,2,3,
letting the dynamics update all the other variables, we
use 10 EOFs to represent the error subspace and a
forgetting factor of 0.75 (Raick et al., in press).



Fig. 16. Real data assimilation experiment results: comparison between the RMSs (above) and RMSt (below) of the free run and the EnKF run
(forecast and analysis).
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Curves being very near from each other, we do not
present the concentrations profiles of the different
variables; hence we prefer just use the error measure-
ment tools. We show in Figs. 17 and 18 the RMSs and
RMSt errors for the EnKF and the SEEK runs. Time
evolution of Phy1,2 and Zoo1,2 errors are globally



Fig. 17. Real data assimilation experiment results: comparison between the RMSs of the EnKF run and the SEEK run.
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smaller for the EnKF than for the SEEK filter. Besides,
the Phy3, NO3, SiO2, Bac, POC and PON RMSs

differences are equivalent for both filters; for instance,
the concentration of microphytoplankton in spring is
best estimated by the SEEK but the tendency is reversed
Fig. 18. Real data assimilation experiment results: comparison
in summer. By inspection of the RMSt profiles, we see
that Phy1 and Phy2 results are better in the whole water
column for the EnKF than for the SEEK, whereas for
Phy3, we can not draw general conclusion; the
estimation of the concentrations in microphytoplankton
between the RMSt of the EnKF run and the SEEK run.



Fig. 19. Real data assimilation experiment results: adimensionalized
Taylor diagram comparing the EnKF to the SEEK filter.
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in the first 30 m is better for the SEEK and between
30 m and 50 m better for the EnKF. Nitrate, silicate,
particulate organic matter contents in carbon and
nitrogen estimates are very similar for both the data
assimilation techniques. Again, we see the advantage of
the EnKF over the SEEK in estimating the concentra-
tions in carbon of the 2 groups of zooplankton.

Finally, we present a comparative adimensionalized
Taylor diagram for the real data experiment performed
with each filter. We note that the two assimilation
protocols yield a general improvement for the Phy1Chl
and Phy2Chl estimates, by significantly increasing the
correlation R, reducing the normalized centered pattern
RMS difference Ê′ and approaching the value of 1 for
the normalized standard deviation σ̂f. Phy3Chl estimates
of the EnKF and the SEEK filters are both worse than
the free run solution. For CZoo1, the similarity remains
unchanged but both the variability and the amplitude of
the error are improved in comparison to the uncorrected
run, especially for the EnKF; for CZoo2, R is slightly
increased for the SEEK and slightly decreased for the
EnKF, whereas both Ê′ and σ̂f are improved for the
experiments. For POC, PON and NOs we do not
perceive a real difference in the results, neither between
the filters, nor between each filter and the free run. For
SiOs, we just note an improvement of the variability
representation. The CBac variable is globally (R, Ê′ and
σ̂f) improved by the EnKF run and hardly changed by
the SEEK run.

At last, we can conclude that, regarding only the
results, the EnKF works slightly better than the SEEK
filter (Fig. 19). However, the computation of the
solution with the EnKF is far more expensive than
with the SEEK; typically, a one-year run with 11 data
assimilation dates, takes about 2 min to be performed
with the SEEK and 1 h with the EnKF, because of the
propagation of 100 members instead of 1.

6. Conclusion

An Ensemble Kalman filter (EnKF) has been applied
on a 1-D coupled hydrodynamic-ecosystem model of the
Ligurian Sea. In order to improve its performance, it has
been equipped with a subsampling strategy to better
represent the statistics of the initial ensemble, given a
limited number of members, and a pre-analysis step,
consisting in applying an appropriate transformation to
fulfill as well as possible the Gaussian assumption,
required to reach the optimality of the filter. Twin
experiments were performed in order to test the
performance of the method and to determine a suitable
data assimilation (DA) protocol with a view to perform
real in-situ DA experiments. The ideal DA protocol is
quite intuitive, the more data we assimilate and the more
precise they are, the better the results. In the casewe don't
have measurements of many different variables (i.e.
phytoplankton contents in carbon or nitrogen, nitrates,
silicates, zooplankton contents in carbon and nitrogen,
etc.) regularly spaced in time, the only observation and
correction of phytoplankton contents in carbon, letting
the dynamics of the model updating the other variables,
the results were already positively affected.

In addition, the comparison of two versions of the
filter has shown us that the ensemble subsampling
strategy is slightly beneficial, as well as the lognormal
transformation, which requires however an a priori
work. However, the improved sampling strategy might
be more beneficial for a model with a larger state space.

Then, we assimilate data of year 2000 at station
Dyfamed in order to improve the model results. We
observed that the larger improvements were happening
during the late bloom, which is actually the time period
of greatest variations of phytoplankton concentrations.
The comparison of this hindcast of the Ligurian
ecosystem for this year with the one realized with a
SEEK filter, has highlighted a slightly better ability of
the EnKF to catch the non-linearity of the system
dynamics, but with a very higher computational cost.
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Appendix A. Member perturbation

For a given state variable or measurement, in order to
generate the initial and observation ensemble members,
or to perturb the state vector by model errors, as in
Eknes and Evensen (2002), we add to the best guess
estimate a pseudo random field drawn from a normal
distribution, with a zero mean and a prescribed absolute
or relative standard deviation. Hence the jth ensemble
element is given either by

mðzÞj ¼ lðzÞ þ rðzÞN ð0;1Þj ðA:1Þ
in the case of a prescribed absolute standard deviation,
or by

mðzÞj ¼ lðzÞð1þ rðzÞrelN ð0;1ÞjÞ; ðA:2Þ
in the other case, with σ having the same units as μ and
σrel being dimensionless. The dependence of the
standard deviation with z allows us to take into account
a smoothing of the observational error with depth. Here
Fig. B.1. Normalized Taylor diagram reprinted from Raick e
we use a decrease of σ(z) and σrel (z) with z according to
exp − z

L
� �2� �

where L denotes a decorrelation length
appropriate to the considered variable; typically it
corresponds to the nutricline for the nutrients, the
euphotic layer for the plankton variables, etc.

Appendix B. Taylor diagram

Let us denote by fi,j the forecast and by ri,j the
reference fields defined at a given point of the vertical
domain (the ith layer) and at a given time (the jth day)
and consider the following statistical quantities:

1. their space and time variability can be assessed by
their respective standard deviations σf and σr

rf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNt

i¼1

XNz

i¼1

dtj
T

dzi
D

ð fi; j − f̄ Þ2
s

; ðB:1Þ

rr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNt

i¼1

XNz

i¼1

dtj
T
dzi
D

ðri; j − r̄ Þ2
s

; ðB:2Þ

where Nt is the number of discrete points in time, Nz the
number of discrete points in space, dtj the jth time
interval, dzi the thickness of the ith layer, D=Σi=1

Nz dzi
the size of the spatial domain, T=Σj=1

Nt dtj the duration of
the simulation, f̄ and r̄ the time and space-averaged
t al. (2005) and originally designed by Taylor (2001).
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forecast and reference fields; 2. the amplitude of the
errors between the two fields can be compared by
computing the Root-Mean-Square (RMS) difference

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNt

i¼1

XNz

i¼1

dtj
T

dzi
D

ð fi; j − ri; jÞ2
s

; ðB:3Þ

3. their similarity is given by the correlation
coefficient R

R ¼ covð f ; rÞ
rf rr

¼

XNt

j¼1

XNz

i¼1

dtj
T

dzi
D

ð fi; j − f̄ Þðri; j − r̄ Þ

rf rr
:

ðB:4Þ
All of the above statistics are actually related if the

RMS error is decomposed into a mean component Ē and
a centered pattern RMS difference E′ according to

RMS2 ¼ Ē
2 þ EV2; ðB:5Þ

where Ē= f̄ − r̄ and

EV¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNt

i¼1

XNz

i¼1

dtj
T

dzi
D

ðð fi; j − f̄ Þ
s

−ðri; j − r̄ ÞÞ2 ðB:6Þ

With these definitions we can write the relationship
between these quantities in a form common to the law
of cosines E′2 =σf

2 +σr
2−2σfσr R, that can lead to a

geometrical representation of the correspondence be-
tween these fields. These statistics can then be sum-
marized in a single plot, the Taylor diagram (Taylor,
2001). The correlation coefficient R and the centered
pattern RMS difference E′ between the two fields,
along with the standard deviation are all indicated by a
single point on a 2D plot (see Fig. B.1 — left). Because
of the different units of measure, the statistics of the
different variables have to be non- dimensionalized
before appearing on the same diagram. The centered
pattern RMS and the two standard deviations are
normalized by σr:

ÊV¼ EV
rr

; r̂f ¼ rf
rr

; r̂r ¼ 1 ðB:7Þ

This leaves the correlation coefficient unchanged and
yields a normalized diagram as we can see in Fig. B.1
(right). Because normalized by itself, σ̂r is always
plotted at unit distance from the origin along the
abscissa. The correspondence of a particular variable to
the data can be made by inspecting the position of the
corresponding point on the diagram. Its azimuthal
position arccos R indicates the correlation: the smaller
is the angle, the better is the correlation. The distance
between the model output point and the point represent-
ing the reference provides information about the
centered pattern RMS difference E′. Its distance from
origin indicates its normalized standard deviation σ̂f, a
value of 1 indicates that the forecast and reference fields
have similar standard deviations.
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