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A new strategy for the vertical gridding in terrain-following 3D ocean models is presented here. The ver-
tical grid adaptivity is partially given by a vertical diffusion equation for the vertical layer positions, with
diffusivities being proportional to shear, stratification and distance from the boundaries. In the horizon-
tal, the grid can be smoothed with respect to z-levels, grid layer slope and density. Lagrangian tendency of
the grid movement is supported. The adaptive terrain-following grid can be set to be an Eulerian–
Lagrangian grid, a hybrid r–q or r–z grid and combinations of these with great flexibility. With this,
internal flow structures such as thermoclines can be well resolved and followed by the grid. A set of idea-
lised examples is presented in the paper, which show that the introduced adaptive grid strategy reduces
pressure gradient errors and numerical mixing significantly. The grid adaption strategy is easy to imple-
ment in various types of terrain-following ocean models. The idealised examples give evidence that the
adaptive grids can improve realistic, long-term simulations of stratified seas while keeping the advanta-
ges of terrain-following coordinates.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In Burchard and Beckers (2004) a strategy to create a vertical
grid layer distribution that adapts the distribution of calculation
points to the solution of a vertical 1D ocean model is presented.
The purpose for that method was paving the way for extensions
to 3D models where adaptations could be more beneficial than in
a 1D case. In the present paper, we therefore generalise this ap-
proach to the more interesting 3D case, with the aim to provide
some strategies to adapt the numerical grid vertically with keeping
the horizontal distribution of coordinates unchanged. The reason
for using adaptive grids in 3D models can be found in the analysis
of the different advantages and drawbacks of the vertical coordi-
nate systems classically used in 3D ocean models.

One can basically distinguish z-coordinate models (e.g., Modu-
lar Ocean Model, see Bryan, 1969), r-coordinate models (e.g.,
Princeton Ocean Model, Blumberg and Mellor, 1987), or isopycnal
models (e.g., Bleck and Smith, 1990; Bleck, 2002). For z-coordinates
models grid lines are horizontal, for r-coordinates they follow the
topography and for isopycnal models they follow density surfaces.
When comparing advantages and disadvantages of the different
kind of models, it appears that the choice of a particular vertical
coordinate system has some advantages in some occasions (and
ll rights reserved.
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locations), but is not optimal in other locations or moments (see
Griffies et al., 2000). Also sometimes, the optimal choice of the ver-
tical coordinates would depend upon the characteristics of the cir-
culation which may change in space and time. The presently
optimal model should make use of z near surface, isopycnal coor-
dinates in the interior and r-coordinates at the bottom.

If one had a model in which different vertical coordinate sys-
tems could be used, one could more easily distinguish and separate
the different contributions to changes in simulation results (as pre-
sented in Ezer (2005) for a downflow experiment). Such a hybrid
coordinate model has already been introduced by Kasahara
(1974) in the sense that a generalised vertical coordinate transfor-
mation was suggested for ocean models. The so called s-coordinate
models or hybrid coordinate models (see Song and Haidvogel,
1994; Burchard and Petersen, 1997; Madec et al., 1998; Pietrzak
et al., 2002) are now standard modelling tools. They allow vertical
coordinates to be located in a completely arbitrary way and there-
fore allow to compare the effect of different choices of coordinate
systems. However, presently generalised coordinates models do
not yet consider the question how to dynamically change the
coordinates in an optimal way so as to reduce the numerical dis-
cretisation errors. Errors that could be reduced include, e.g., errors
in isopycnal diffusion discretisations (Beckers et al., 2000),
pressure gradient errors (Deleersnijder and Ruddick, 1992), unsat-
isfactory representation of downslope flow of plumes (Beckmann
and Döscher, 1997), numerical damping of internal waves (Stanev
and Beckers, 1999) and numerical mixing in stratified basins
(Rennau and Burchard, 2009).

http://dx.doi.org/10.1016/j.ocemod.2009.12.003
mailto:richard.hofmeister@io-warnemuende.de
mailto:hans.burchard@io-warnemuende.de
mailto:JM.Beckers@ulg.ac.be
http://www.sciencedirect.com/science/journal/14635003
http://www.elsevier.com/locate/ocemod


R. Hofmeister et al. / Ocean Modelling 33 (2010) 70–86 71
Such error reductions are generally not done dynamically, since
hybrid models and more classic models are often used in an a priori
way, where the coordinates are placed according to the modellers a
priori knowledge of the processes to be properly resolved. This ap-
proach is certainly already advantageous compared to the classic
models were such a free choice is not possible, but it does not
use the possibility of adapting the coordinate positions during
the calculation according to the modelling results themselves.1

Though standard in classic computational fluid dynamics (see
Thompson et al., 1985; Liseikin, 1999) or atmospheric models
(see Fiedler, 2002), the use of adaptive vertical grids in ocean mod-
els is rare. Exceptions are the use of grid adaptation by empirical
functions to achieve boundary layer refinements in isopycnal mod-
els (see Dewar and McDougall, 2000; Holt and James, 2001; Bleck,
2002) or grid refinements on horizontally meshes (by adaptive
nesting for example Blayo and Debreu, 1999). A general extension
to the s-coordinate system has been suggested by Song and Hou
(2006), who showed that hybrid coordinate systems allow for
reducing discretisation errors without loosing the advantages of
terrain-following coordinates. A hybridisation of different vertical
grids with regard to global ocean modelling is used in the HYCOM
model (Bleck, 2002; Halliwell, 2004; Chassignet et al., 2006) to al-
low the transition from an isopycnal grid for the deep ocean to a
terrain-following grid in shallow waters and a near-z-level grid
at the surface. Here our objective is to define and test strategies
to generate dynamically adaptive vertical grids based on the simu-
lation results themselves.

Some aspects of adaptive grids in meteorological modelling
should be considered here. Behrens et al. (2000) used a semi-
Lagrangian approach to move adaptive grid refinements in a
meteorological model which allows to keep sharp structures in a
moving grid even without increasing the total resolution of the
model grid. For ocean modelling applications, Adcroft and Hallberg
(2006) discuss the benefits and drawbacks of Lagrangian and
Eulerian approaches and prefer an arbitrary Lagrangian–Eulerian
method with a generally Lagrangian coordinate allowing for
cross-coordinate flow. This is applied and tested for the adaptive
grid method presented here.

The pressure gradient problem in r or s-coordinate models
(Mellor et al., 1994; Haney, 1991; Burchard and Petersen, 1997)
is shown to be reduced by model techniques for non-isopycnal
vertical coordinates. The vertically adapted grid generally has to
deal with the calculation of horizontal gradients (Stelling and
Van Kester, 1994) and the internal pressure gradient (Shchepetkin
and McWilliams, 2003 and references therein).

Auclair et al. (2000) showed that an optimised grid placement
(double r-coordinate systems) and an optimised initial density
field can significantly reduce truncation errors in ocean models
at least for fixed grids. Also Song (1998) and Song and Wright
(1998) argue that the truncation error in the pressure gradient cal-
culation is minimised for optimal grid distributions. In meteorolog-
ical modelling, grid adaption with respect to estimates of the
truncation error for adaptive grids is advocated by Skamarock
(1989). The vertical adaptive coordinate method is expected to
optimise the vertical grid in an optimal way for calculating hori-
zontal gradients. A near-isopycnal grid adaption would improve
the representation of diffusive fluxes as discussed by Mellor and
Blumberg (1985) and recently by Marchesiello et al. (2009). Advan-
tages for mass transport modelling with a grid method adapting to
vertical gradients of sediment are shown by Wai and Lu (1999) for
1 r-coordinate models are of course adaptive grids in the sense that they follow sea
surface elevation changes, and isopycnal models are also adaptive in the sense that
they follow isopycnals. Here we refer to adaptive grids as to those which explicitly
include a strategy to modify the vertical distributions of coordinate points by other
means.
modelling sediment transport. In their case, a Eulerian–Lagrangian
technique was used for flat-bottom experiments. In general oce-
anic applications, it is needed to account for multiple state vari-
ables for the grid adaption (as the idea of Burchard and Beckers,
2004). Additionally, with coarser resolution and strongly varying
topography, the grid could get distorted and needs strong horizon-
tal filtering.

The paper is organised as follows: First the concept of general
vertical coordinates is briefly reviewed with respect to the primi-
tive equations (Section 2.1). Then, the grid adaptation strategies
are derived (Section 2.2). Afterwards, the numerical methods for
solving the dynamical equations in the framework of the moving
grids are discussed (Section 2.3–2.8). In Section 3, the implementa-
tion concept into the used 3D model are described. These methods
are then compared and investigated in detail for four different
idealised model scenarios (Section 4). Finally, the results are sum-
marised and discussed (Section 5).

2. Grid adaptation

2.1. The transformed model space

In order to increase the mathematical flexibility of a 3D ocean
model, a general vertical coordinate transformation C following
Kasahara (1974) and Deleersnijder and Ruddick (1992) is carried
out which maps the physical space ðt�; x�; y�; zÞ, with the vertical
coordinate z pointing upwards, into a transformed space spanned
by the coordinates ðt; x; y; cÞ. The general vertical coordinate c is as-
sumed to be monotone with respect to z:

c ¼ Cðt�; x�; y�; zÞ () z ¼ zðt; x; y; cÞ ð1Þ
The following coordinate change is thus used:

t� ¼ t; x� ¼ x; y� ¼ y; z ¼ zðt; x; y; cÞ ð2Þ

with the Jacobian of the transformation being simply @cz. c can be
chosen for convenience to vary between �1 at the bottom and 0
at the surface.

One of the simplest coordinate transformation of this type is the
so called r-coordinate transformation

c ¼ r ¼ z� g
D

ð3Þ

where g is the sea surface elevation (counted positive upwards from
z ¼ 0 at the reference surface) and D ¼ H þ g is the total local depth
(topographic depth H plus sea surface elevation).

The purpose of the present paper is to find some optimal way to
define the function zðt; x; y; cÞ. The adaptive coordinate must al-
ways and everywhere satisfy a non-vanishing Jacobian and total
height conservation. Apart from these restrictions, the coordinate
change is highly flexible and can therefore accommodate any de-
sired treatment.

The dynamic equations in the physical space can then be
integrated in the transformed, discretised space as presented in
Burchard and Petersen (1997) or alternatively presented in Lander
et al. (1994).

From here on, in order to simplify the numerical treatment, we
try to find the non-uniform coordinate transformation zðx; y; t;rÞ,
where r is uniformly distributed in ½�1;0� corresponding directly
to the discrete numerical vertical grid indices. From there the
non-uniform c distribution can be recovered by the definition

c ¼ zðrÞ � g
D

ð4Þ

The objective is to find the coordinate transformation

z ¼ zðrÞ;r 2 ½�1; 0� ð5Þ

which covers the domain z 2 ½�H;g� in some optimal way.
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2.2. Optimisation technique

Optimisations for general vertical coordinates are starting with
generalising the sigma distribution to be zoomed towards bottom
and surface, also called s-grid, in order to optimise the near-surface
and near-bottom resolution. In Fiedler (2002), a grid adaptation by
an empirical function depending on mixed layer depth is pre-
sented. The grid transformation strategy here should generally
optimise the resolution of vertical gradients based on a priori min-
imisations (approach advocated in Thompson et al. (1985) and fol-
low up of Burchard and Beckers (2004)).

One possibility is minimising the cost function I1 defined by

I1 ¼
Z g

�H
@rfð Þdz ¼

Z 0

�1
@zf @rzð Þ2dr ¼

Z 0

�1
w1 @rzð Þ2dr ð6Þ

for each individual water column in the model domain. Here the
weight w1 ¼ @zf is obviously related to the rate of change of the
function f or alternatively to the inverse length scale of the function
variations.

Minimisation of (6) tries to find the coordinate change z ¼ zðrÞ
such that in the new coordinates, the gradients (with respect to the
new coordinate) of f are uniform and small. The Euler–Lagrange
equation for fixed end points zð�1Þ ¼ �H and zð0Þ ¼ g and assum-
ing the weighting function depending on the normalised coordi-
nates: w1 ¼ w1ðrÞ writes as

@r w1@rzð Þ ¼ 0 ð7Þ

However, in practice the weighting will rather be dependant on
physical space coordinates since ultimately this is what is of inter-
est to the modeller. This can be handled by using Eq. (7) with a dif-
fusion term for a discrete set of r levels, but where w1 must be
updated at each change of z. Hence, (7) is essentially non-linear
in that case. Another approach would be to accept the a priori
dependence of w1 on the physical space and to minimise instead

I2 ¼
Z 0

�1
w1ðzÞ @rzð Þ2dr ð8Þ

which lead to the same Euler–Lagrange equation as (7). It can easily
be shown that this approach minimises the error when assuming
piecewise constant functions for a discrete set of data points. In-
stead of solving the Euler–Lagrange equation exactly at each model
timestep, we rather allow to move the grid towards this exact solu-
tion in a time-marching manner:

@tz� @r kgrid
@rz

� �
¼ 0 ð9Þ

with the grid-related diffusivity kgrid and r 2 ½�1; 0� and boundary
conditions for z from zð�1Þ ¼ �H and zð0Þ ¼ g.

According to Burchard and Beckers (2004), the grid diffusion
coefficient kgrid (which has the physical unit s�1) is calculated as

kgrid ¼ D
tgrid

cN2 Kgrid
N2 þ cS2 Kgrid

S2 þ cdKgrid
d þ cbKgrid

b

� �
ð10Þ

with the stratification-related component

Kgrid
N2 ¼

maxð0; @zqÞ
Dq

ð11Þ

the shear-related component

Kgrid
S2 ¼

j@zv j
Dv ð12Þ

the near-surface component

Kgrid
d ¼ 1

dþ d0
ð13Þ

and the background component
Kgrid
b ¼ 1

D
ð14Þ

Here, Dq is a reference density difference and Dv a reference
velocity difference. The grid diffusion timescale is denoted by
tgrid. d is the distance from the surface, d0 is a variable determining
the intensity of the near-surface grid zooming and the coefficients
cX are the diffusion weights. For the discretised version see
Burchard and Beckers (2004), where this approach is applied for
a 1D water column model.

The optimisation technique to minimise the integral of layer-re-
lated, vertical gradients in the model grid as presented above is
easy to implement in an ocean model. The minimisation distrib-
utes the state variables and the velocity fields onto the vertical grid
to be represented uniformly. It is easy to ensure a positive Jacobian
and boundary fitting, because it is a valid transformation in that
sense. However, the minimisation does not give a direct link be-
tween adjacent verticals in the horizontal model grid. The only link
is the continuity of the physical fields to which the adaption is
done. The horizontal filter methods presented in the Sections
2.4–2.7 below will supply a link between neighbouring water col-
umns. For application in ocean models, the choice of diffusion
weights cX is not unique and will depend on the objective of the
model study.

2.3. Vertical discretisation

For the discretisation, the physical space is vertically divided
into N layers. This is done by introducing internal surfaces zk,
k ¼ 1; . . . ;N � 1 which do not intersect, each depending on the hor-
izontal position ðx; yÞ and time t:

�Hðx; yÞ ¼ z0ðx; yÞ < z1ðx; y; tÞ < . . . < zN�1ðx; y; tÞ
< zNðx; y; tÞ ¼ gðx; y; tÞ ð15Þ

with the local layer depths

hk ¼ zk � zk�1 ð16Þ

for 1 6 k 6 N, the local bottom coordinate, Hðx; yÞ, and the sea sur-
face elevation, gðx; y; tÞ. The objective of the grid adaption is to find
a distribution of the vertical location of interfaces zk so as to place a
given number of discrete grid points in an optimal way in terms of
the specified optimisation parameters. This is leading to the height
of the grid layers of hk ¼ zk � zk�1 with

P
khk ¼ H þ g if the grid is

formed correctly with z0 ¼ �H; zN ¼ g and zk > zk�1.
The horizontal transports are calculated from the hydrostatic

Reynolds-averaged Navier–Stokes equations in the physical model
space. The vertical velocity equation reduces for hydrostatic flow
to the hydrostatic balance,

@zp ¼ �gq ð17Þ

such that for incompressible flow the vertical velocity w is calcu-
lated by means of vertically integrating the incompressibility
condition

@xuþ @yv þ @zw ¼ 0 ð18Þ

where p is the pressure, g the gravitational acceleration and ðu;v ;wÞ
are the components of the velocity vector. The discretisation of (18)
is of the following form:

�wk ¼ �wk�1 � @thk � @xpk � @yqk ð19Þ

with the grid-related vertical velocity

�wk ¼ @tzk � ujzk
@xzk � v jzk

@yzk ð20Þ

and the layer-integrated transports
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pk ¼
Z zk

zk�1

udz; qk ¼
Z zk

zk�1

v dz ð21Þ

see Burchard and Petersen (1997) for details.

2.4. Horizontal filtering of interface positions

The independently adapted vertical coordinates can be homog-
enised horizontally by having similar vertical positions for the
same levels on r. However, the truncation error in the calculation
of horizontal gradients in a horizontally non-aligned vertical coor-
dinate system is indicated to be small for a small value of

Ahc ¼
j@xzkj
hk=Dx

ð22Þ

where Ahc P 1 if the hydrostatic consistency is violated and extrap-
olations are expected. In our case with arbitrary small hk, the poten-
tial errors can be reduced by a horizontal diffusion of the vertical
position for each discrete level on the numerical grid r. The filtering
can be defined as

@tzk ¼ @x Ai@xzkð Þ þ @y Ai@yzk

� �
ð23Þ

where x and y are the spatial coordinates of the numerical grid and
the diffusivity Ai scales with ahor

Dx2

4Dtf
. Dtf is a timescale for the hor-

izontal filtering, which is the baroclinic timestep in the shown
experiments, and ahor is a number between [0,1] and defines the
strength of the horizontal filtering of interface positions.

The horizontal filtering of interface positions is a control on the
horizontal regularity of the grid and it is easy to implement. For the
resulting 2D elliptic equation, no extrema may exist. If a local ex-
trema exist in a specific vertical, the filtering in the whole model
domain may result in a non-unique coordinate change. The filter-
ing may also lead to negative Jacobians and interface depths below
topography. Hence an enforcing of well-defined grid is required
afterwards (see Section 2.8).

At the lateral boundaries, Dirichlet or Neumann-type conditions
could be applied.

2.5. Advection of z, Lagrangian approach

The incompressibility condition (19) can be rewritten as

@thk þ @xpk þ @yqk ¼ �wk�1 � �wk ð24Þ

The transformed vertical velocity �w relative to the moving grid is
defined such that fluxes across coordinate surfaces are zero if this
velocity is zero. For pure Lagrangian-type models, �w ¼ 0 is defined.
Normally, Eq. (24) is used to diagnose vertical velocities from pre-
scribed changes in the grid and divergence of the velocity field as
presented in the model description for the model used here.

But it can also be used to enforce Lagrangian movements of the
grid by solving the equation for hk imposing zero relative vertical
velocity:

@thk ¼ �@xpk � @yqk ð25Þ

will give a first guess for new positions ~hnþ1
k from which the new

values can be calculated by any further re-gridding strategy. The
Lagrangian-type guess for the new layer heights is

~hnþ1
k ¼ hn

k � alagDtð@xpk þ @yqkÞ ð26Þ

where the upper indices denote the time step numbers. For values
alag ¼ 1, the vertical discretisation change (26) is fully Lagrangian
and values alag < 1 are introducing a Lagrangian tendency only.
The Lagrangian approach decreases the grid-related vertical
transports and thus the numerical mixing resulting from vertical
advection of vertical tracer and momentum gradients. However,
the grid-related vertical velocities are calculated after the grid adap-
tion using Eq. (19).

The Lagrangian tendency minimises vertical advection and
associated numerical mixing since strong vertical gradients mov-
ing with the vertical flow velocity are typical in oceanic applica-
tions. It is easy to implement if the grid adaption is placed
correctly into the model loop. Nevertheless, the Lagrangian ten-
dency may lead to invalid grids and layer interfaces below topog-
raphy or above sea level. If an initial distribution of layers is
defined, a pure Lagrangian advection of layers cannot control the
grid regularity, especially not, if open boundaries are included in
the model domain.

2.6. Horizontal filtering of layer thicknesses

Violating the hydrostatic consistency in the model grid discret-
isation indicates possible truncation errors, which feed into the
calculation of the internal pressure gradient. Song (1998) estimates
the error for the pressure gradient calculation over a vertical extent
of a single cell scales with dxðdrzÞ (in our notation: dxhk) for a buoy-
ancy field which can be represented by second-order polynomials
in the vertical.

Beside that, the magnitude of the pressure gradient error is
depending on the pressure gradient formulation (PGF) itself. High-
er order terms for the representation of the buoyancy field will re-
sult in higher order terms for the error in the PGF. According to
Song (1998), the discretisation error disappears for

dxhk ¼ 0 ð27Þ

a condition, which can be approached by applying a horizontal dif-
fusion of layer thickness. The diffusion of layer thickness writes as

@thk ¼Ah @xx þ @yy
� �

hk ð28Þ

where Ah scales with adif
Dx2

4Dtf
and adif is a number between [0,1] and

defines the strength of the horizontal filtering of layer thicknesses.
Next to the reduction of PGF errors, the horizontal diffusion of

layer height is an additional control for the horizontal regularity
of the grid. Drastical changes between adjacent water columns
are smoothed. The iterative process of the vertical optimisation
technique and the horizontal filtering of layer thicknesses tends
to create ‘‘iso-gradient” layers, which are locally similar to isopyc-
nal layers for small isopycnal slopes and distant to the bottom and
the surface.

The horizontal filtering of layer thicknesses can have the same
effect as the horizontal filtering of layer heights for special scenar-
ios. For a horizontally varying, vertical optimisation effect or
bathymetry, both filters will act differently.

However, in addition to the diffusion of layer height h, the con-
servation of total depth may be violated (similar problems as with
the horizontal bolus velocity in isopycnal models (see Gent and
McWilliams, 1990)). The conservation of total depth has to be en-
forced separately as suggested in Section 2.8. Thus the effect of
minimising the pressure gradient error is limited. At least in a pure
r-coordinate grid, the effect of horizontal diffusion of layer height
is compensated by the depth conservation.

2.7. Isopycnal tendency

The objective for this aspect of the grid adaption strategy is to
place zk to be on user-defined q surfaces. Special treatments are
needed at the bottom, the surface and for interleaving layers in
pure isopycnal models, when isopycnals disappear or new layers
have to be added. Therefore, the objective is move in time the point
from zn

k into a position znþ1
k where the density has a given value q�k.

This can be achieved by observing that
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qðznþ1Þ � qðznÞ þ znþ1 � zn
� �

@zq ð29Þ

So that the best guess for the update would be

znþ1
k ¼ zn

k þ
q�k � qðznÞ

@zq
ð30Þ

meaning that one can add the following tendency term

znþ1
k ¼ zn

k þ aiso
q�k � qðznÞ

@zq
a < 1 ð31Þ

where aiso ¼ 1 is strong isopycnal tendency and aiso ¼ 0 is no iso-
pycnal tendency.

q�k, the target isopycnal value for level k can be prescribed a pri-
ori like in isopycnal models, but it could be more flexible to let the
model calculate the target densities from the density distribution
itself. This can be achieved iteratively by assigning to q�k a mean va-
lue of all qk from surrounding water columns. The stencil for the
averaging can be large if some basin scale ‘‘isopycnals” are thought.
Averaging only over sub-basin scales also allows different ‘‘isopyc-
nals” to be used in physically different regimes. In Section 3 an
example method for calculating the q�k values is given as used for
the examples.

Of course, instead of pushing given discrete levels to prescribed
isopycnal levels, one could also attract them in a similar way to
prescribed z level, oxygen values or any other a priori distribution.
A pure grid adaption towards prescribed z levels will create a hy-
brid grid between r-coordinate and z-level grids.

The advantage of using such an isopycnal tendency (coupled
possibly with the Lagrangian tendency) compared to purely iso-
pycnal models is that the grid does not stick on preserving certain
density values. Hence, the well tested model techniques for calcu-
lating the vertical mixing and handling the non-linear effects of the
equation of state (such as cabbeling) can kept the same. Further-
more, if the physical situation precludes efficient use of purely iso-
pycnal models (for example during deep water formations), the
adaptive grid method simply will move grid points in a non-iso-
pycnal way.

The method also could allow to prescribe different isopycnal
levels (to which grid points are attracted) in different basins, with
transition zones. Again, the numerical grid, since it is absolutely
arbitrary, does not need to adapt physical parameterisations as
they are already included in the primitive equation model. The
advantage of trying to follow isopycnals simply lies in the fact that
if the physical processes are isopycnal, then the numerical grid al-
lows a better representation of those processes as they are aligned
with the grid.

Again, the isopycnal tendency may lead to invalid grids and
interface depths below topography so that total depth conserva-
tion has to be ensured. If there is noise in the isopycnal depths, it
will be transferred to the numerical grid by the isopycnal tendency,
which may have impacts on the horizontal resolution of the flow
field.

2.8. Enforcing well-defined grids

Working with the layer heights hk allows easy diffusion of h, but
it may lead to a ‘‘conservation” problem of the local total depth for
the adapted grid. Working with the interface positions zk might re-
sult in negative layer heights. For a well-defined grid, it has to en-
sured that z0 ¼ �H and zN ¼ g. Additionally it has also to be
enforced that zkþ1 > zk.

If the approach is based on layer thickness tapering or horizon-
tal diffusion of z-levels, one must always include the constraintX

k

hk ¼ H þ g ð32Þ
and hk > 0. We aim for a single step correction (or at least a finite
(known and proportional to N) number of steps) in order to control
the computing cost.

The implementation is to always check for positive layer
heights and enforce the layer heights to be larger than a specified
minimum depth. Finally, the adapted, uncorrected grid ~hk is cor-
rected to match the local depth by

hk ¼ ak
H þ gP

ak
~hk

 !
~hk ð33Þ
where the correction weights ak can be also used to concentrate
even more levels where needed (see Liseikin, 1999). Here we use
ak ¼ 1 to apply a global compression/expansion to fit the total
depth.
3. Implementation

3.1. 3D model specifications

The grid adaptation, which is introduced here, is implemented
into the GETM (General Estuarine Transport Model, Burchard and
Bolding, 2002; Burchard et al., 2004, see also www.getm.eu) model
which is a fully baroclinic model based on the primitive equations
with turbulent closure schemes from GOTM (General Ocean Turbu-
lence Model, Umlauf et al., 2005; Umlauf and Burchard, 2005, see
also www.gotm.net). Various GETM applications (Burchard et al.,
2004, 2008, 2009; Stanev et al., 2003; Banas and Hickey, 2005; Um-
lauf and Lemmin, 2005; Staneva et al., 2009; Hofmeister et al.,
2009) show that the model is able to reproduce observed physical
regimes in estuaries, coastal seas and lakes. The model numerics
contain high-order advection schemes for momentum and tracer
advection (Pietrzak, 1998; Burchard and Bolding, 2002) and vari-
ous pressure gradient formulations (as presented in Shchepetkin
and McWilliams (2003)). In the vertical, a flexible, general vertical
discretisation for terrain and surface following coordinates (see
Burchard and Bolding, 2002) are implemented. The model has a
free surface and a mode-splitting implemented, which allows to
have a smaller timestep for the barotropic mode as for baroclinic
mode. Both modes are two-way coupled such that the vertically
integrated horizontal transports are consistent (see Burchard and
Bolding (2002) for details). The vertical grid calculation (including
the grid adaption) is part of the baroclinic mode. Regarding the
layer distribution, there are three options for the initialisation of
a model run:

(a) Starting with predefined distributions for temperature and
salinity without any velocities, and a sigma-type layer distri-
bution, the grid adaption is expected to take place during the
model run.

(b) Starting with predefined distributions for temperature and
salinity without any velocities and pre-adaption of the grid
to the density distribution and the bathymetry. During the
pre-adaption process, only vertical transport through the
layer interfaces is allowed. After the pre-adaption, a balance
between adaption to stratification and bathymetry should
be approached, in order to avoid a strongly moving grid at
the beginning of the simulation. The initial temperature
and salinity fields are re-interpolated onto the pre-adapted
model grid afterwards.

(c) Starting in hotstart mode, which continues an existing sim-
ulation. The information, which is needed at the beginning
of a simulation loop is read from a file during initialisation.

http://www.getm.eu
http://www.gotm.net
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3.2. Implementation of the grid adaption in the model loop

The grid adaption is part of the baroclinic mode calculation in
the main model loop. The main order in the loop of the baroclinic
mode is

1. Updating the horizontal transports;
2. Updating the grid (which is the grid adaption in case of adaptive

grids) and the grid-related vertical velocities.
(a) The pseudo-Lagrangian adaption (Eq. (26) in Section 2.5)

and the horizontal diffusion of layer height (Eq. (28) in
Section 2.6) and additionally an enforcing of well behaved
grid is called (see Section 2.8). The horizontal diffusion of
layer heights is not activated between land and water cells
and outside the model domain at the open boundaries.

(b) The vertical refinement of the grid by horizontal filtering of
interface positions (Eq. (23) in Section 2.4) and the isopyc-
nal tendency (Eq. (31) in Section 2.7): The horizontal filter-
ing of interface positions is switched off for thin layers (if
the layer height less than the specified minimum depth)
and between land and water cells. The distance of interface
movement by the isopycnal tendency is limited to be less or
equal the layer height in order to avoid pathologic grids
when strong along-layer gradients are existing (e.g., near a
plume front or steep slopes).The isopycnal tendency is cal-
culating its reference densities by averaging over a given
horizontal stencil of 5 � 5 grid points within the specific
model layer:
q�i;j;k ¼
1Piþ2;jþ2

i0 ;j0¼i�2;j�2mi0 ;j0

Xiþ2;jþ2

i0 ;j0¼i�2;j�2

mi0 ;j0 � qi0 ;j0 ;k ð34Þ
where i; j; k are the grid cell indices in the 3D model grid and
m is a land mask with m ¼ 0 for land cells and m ¼ 1 for
water cells. Again the enforcing of a well behaved grid is
called.

(c) The grid adaption to stratification, shear and distance to
bottom and surface (Eq. (9) in Section 2.2). A background
adaption towards an equally spaced vertical grid is calcu-
lated for the sum of the four related tendencies equalling
one. The different tendencies could be combined locally
weighted, depending on depth, velocity, sub-basin averaged
stratification for example. In our case, the weights are spec-
ified constant in time and space. The vertical diffusion in the
grid adaption is calculated implicitly.

(d) The grid-related vertical velocities are calculated from Eq.
(19).
3. Evaluating the turbulent mixing quantities;
4. Updating temperature, salinity and finally density distribu-

tions.

For the final moving of data when grid points have been
adapted, a high-order advection scheme is needed (Iselin et al.,
2002). The updated distribution of tracers and transports is calcu-
lated by means of the chosen advection scheme based on the grid-
related vertical velocities, calculated after the grid handling in the
model loop. Thus, a specific remapping of tracer and velocity fields
as presented in White and Adcroft (2008) is not necessary here. In
addition, with the present approach tracer conservation is ensured
by the advection scheme. It should be noted that due to the tracer
re-distribution by the high-order advection schemes, filtered grid-
ding is not leading to filtered tracer distributions.

The grid adaptation must be done just before mass conservation
in the model loop, which is assured in our model by the calculation
of the grid-related vertical velocity.
The different parameters of the grid adaption are listed as
follows:
ahor
 factor for horizontal filter of interface positions

alag
 factor for Lagrangian tendency (see (26))

adif
 factor for horizontal filter of layer heights hk
aiso
 factor for isopycnal tendency (see (31))

cN2
 diffusion weight related to stratification

cS2
 diffusion weight related to shear

cd
 diffusion weight related to distance from surfaces

dsurf
 norm for distance related to cd
dmin
 minimum height for enforcing well-defined grids

tgrid
 grid adaption timescale
The diffusion weights from (10) should add up to

1 ¼ cN2 þ cS2 þ cd þ cb. Hence, the diffusion weight related to the
background r-layer distribution is calculated accordingly and is
excluded from the list of free parameters. Typical sets of these grid
adaption parameters are given in the examples, discussed in the
next section. It is possible that linking of parameters will be prac-
tical in realistic studies, for example linking the Lagrangian and
isopycnal tendency in order to get isopycnal-type coordinates. Also
adif might be linked to the diffusion weights and the minimum
layer height in order to force the horizontal smoothing, when
potentially distorted grids are expected.

The computational overhead by the grid adaption is mostly
determined by an additional call to the implicit solver for the ver-
tical grid diffusion and the calculation of the running mean of the
density for the isopycnal tendency. Therefore, the calculation of the
running mean of the density is skipped if aiso is zero.

4. Examples

The examples in the following will investigate the performance
of the grid adaption in terms of numerical mixing (internal seiche
(Section 4.1) and multi-basin overflow (Section 4.2) examples) and
in terms of pressure gradient errors for experiments with an oce-
anic seamount (Section 4.3). In a coastal upwelling experiment
(Section 4.4), the grid adaption is applied to a more realistic sce-
nario. In all of the examples, the best-practice model techniques
of GETM are used. A third-order, monotonic TVD scheme is used
for advection of density and velocity and in general a high-order
internal pressure gradient scheme (Shchepetkin and McWilliams,
2003) is adopted.

Mixing is quantified here as the tracer variance decay, which
can be evaluated for the numerically and physically induced mix-
ing as presented by Burchard and Rennau (2008). The tracer vari-
ance decay by physical mixing Dphys is estimated by the decay
term in the budget equation for the square of the mean tracer s
due to turbulent diffusion

Dphys ¼ 2Kv @zsð Þ2 ð35Þ

where Kv is the vertical component of the turbulent diffusivity.
Contributions from the horizontal diffusivity are neglected, because
it is switched off in the following examples. Dphys can be directly
compared to the tracer variance decay due to numerical mixing,
which can be calculated by the difference between the advected
amount of the squared tracer and the squared amount of the ad-
vected tracer divided by the time step Dt (see Burchard and Rennau,
2008). The tracer variance decay due to numerical mixing Dnum for a
certain model grid cell i at a certain time step number nþ 1 writes
as

Dnum
i ¼

A sn
i

� �2
n o

i
� A sn

i

� �
i

� �2

Dt
¼

A sn
i

� �2
n o

i
� snþ1

i

� �2

Dt
ð36Þ
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where A . . .f gi is the tracer concentration resulting from a pure
advection step and Dt is the time step. The tracer concentration
snþ1

i is obtained after the advection step in cell number i. Eq. (36)
can be integrated in the discrete model space with grid cell heights
hnþ1

i as

Dt
X

i

hnþ1
i Dnum

i ¼
X

i

hnþ1
i A sn

i

� �2
n o

i
�
X

i

hnþ1
i snþ1

i

� �2 ð37Þ

Since the advection schemes used here are conservative, for closed
domains without boundary fluxes, (37) can be written as

Dt
X

i

hnþ1
i Dnum

i ¼
X

i

hn
i sn

i

� �2 �
X

i

hnþ1
i snþ1

i

� �2 ð38Þ

Hence, the difference of the tracer variance in a closed domain be-
fore and after the advection step is given by the domain-wide inte-
gral of the value Dnum

i .
Riemenscheider and Legg (2007) showed that in basin-scale

overflow simulations the expected mixing of tracers is covered
exhaustively by the numerical mixing. Hence, the simulated tracer
mixing was depending on the model resolution, which is unsatis-
factory for a physical description of the mixing processes. The
numerical mixing is needed for the monotonicity of the advection
scheme. It has to be reduced as much as possible within this
requirement by the model numerics in order to get a physically
based description of the mixing by a turbulence model. It is ex-
pected here that the physical mixing parameters in the model
are represented in a quantitatively realistic way by properly imple-
mented turbulence closure models (see, e.g., the 1D model-obser-
vation comparison studies by Burchard et al. (2002), Simpson
et al. (2002), Arneborg et al. (2007), Souza et al. (2008), Peters
and Baumert (2007), or the 3D model study by Ilicak et al.
(2008)). The physical and numerical mixing contributions always
compete in reducing the tracer variance in the model domain. It
is thus expected that a reduced numerical mixing could increase
the amount of physical mixing with the same turbulent diffusivity
but acting on stronger gradients.

4.1. Internal seiche

This two-layer flow scenario will demonstrate that the Lagrang-
ian approach indeed allows to move grid points passively with the
vertical velocity field. It will further be shown that grids which are
directly adapted to the changing vertical stratification substan-
tially reduce numerical mixing and perform similarly to Lagrangian
grids. We will further show that in contrast to these adaptive grids
a fixed grid will cause strong numerical diffusion with the effect
that the seiche period is overestimated.

For this test case which is based on a 2D closed flat bottom do-
main with a length of L ¼ 64 km and a mean depth of H ¼ 20 m,
friction and mixing are neglected in order to allow for an analytical
solution. The two layers have a density difference of Dq ¼
3:9 kg m�3. The initial interface between the two layers is located
at

z� ¼ �H
2

1� � sin p x
L

� �� �
ð39Þ

for x 2 � 1
2 L; 1

2 L
� 	

, where x ¼ 0 is the basin centre. The relative
amplitude �, is also a measure for the non-linearity of the scenario.
Initial velocities are zero, the initial sea surface elevation is set to

g ¼ � g0

g
H
4
� sin p x

L

� �
ð40Þ

with the reduced gravitational acceleration

g0 ¼ Dq
q0

g ð41Þ
In this case, the linearised solution from LeBlond and Mysak
(1978) for small density differences can be decomposed in the
barotropic and baroclinic modes. Hence the solution for the inter-
face position is

z� ¼ �H
2

1� � cosðxtÞ sin p x
L

� �� �
ð42Þ

and

g ¼ � g0

g
H
4
� sin p

x
L

� �
cosðxtÞ ð43Þ

for the sea surface elevation g with the frequency

x ¼ 1
2

ffiffiffiffiffiffiffiffi
g0H

p p
L

ð44Þ

The analytical solution for �! 0 for the upper layer velocity uþ

and the lower layer velocity u� is

uþ ¼ �u� ¼ �
2

ffiffiffiffiffiffiffiffi
g0H

p
sinðxtÞ cos p x

L

� �
ð45Þ

The discretisation for this scenario is carried out with a horizon-
tal resolution of Dx ¼ 500 m, a barotropic timestep of 15 s, a baro-
clinic timestep of 150 s and N ¼ 20 vertical layers. In order to avoid
interpolation of the initial density distribution into the numerical
grid, the initial vertical grid is constructed such that the middle
layer is aligned with the density interface and the remaining layers
are distributed with equidistant spacing between the bottom and
the interface and the interface and the surface, respectively:

hk ¼
�z�þg

1
2N

; k ¼ 1
2 N þ 1; . . . ;N

Hþz�
1
2N

; k ¼ 1; . . . ; 1
2 N

8<
: ð46Þ

with the density jump between k ¼ 1
2 N and k ¼ 1

2 N þ 1.
In the upper panel of Fig. 1 the solutions for the normalised

lower layer velocity u� at x ¼ 0 for four different grid types and
a non-linearity of � ¼ 0:2 are compared to the analytical linear
solution (45): the fully Lagrangian grid, the adaptation to stratifi-
cation, the adaption to shear and the grid fixed to the initial grid
with fitting to the changing water depth, only. In order to enable
a fully Lagrangian grid, the background diffusivity cb is exception-
ally set to zero. The parameters for the grid adaptions are listed in
Table 1, unmentioned parameters equal zero for all experiments.

It is clearly seen that the Lagrangian grid and the adaptive grids
based on vertical optimisation are close to each others and also
close to the linear analytical solution. In contrast to this, the solu-
tion with the fixed grid strongly deviates from the other solutions,
both, in period and amplitude.

Fig. 2 shows layer and density distribution for the fixed grid and
the grid adapted to stratification after half of a period of oscillation.
It can be clearly seen that the result with the fixed grid is highly
diffusive and the solution thus is inaccurate.

In order to prove that the normalised Lagrangian solution (as
well as the adaptive-grid solutions) converges towards the norma-
lised linear analytical solution for �! 0, simulation results for
� ¼ 0:1 are shown for the adaptive grids and the fixed grid in the
lower panel of Fig. 1. The solutions for the adaptive grids are in-
deed close to the analytical solution again, whereas the fixed grid
solution strongly deviates from it.

4.2. Multi-basin overflow

A second example showing a reduction of numerical mixing by
the adaptive vertical coordinates is a marginal sea overflow sce-
nario as studied intensively already by Burchard and Rennau
(2008) in terms of numerical mixing. The bathymetry is a simpli-
fied transect through the Baltic Sea, following the major inflow



Fig. 1. The lower layer velocity in the seiche experiment for four different grid types compared to the analytical solution from (45). The upper panel results are for a non-
linearity of e ¼ 0:2 and the lower panel for a non-linearity of e ¼ 0:1.

Table 1
Parameters for the grid adaptions in the internal seiche experiments.

Grid alag adif cN2 cS2 cb dmin (m) tgrid (h)

Fully Lagrangian 1.0 0.0 0.0 0.0 0.0 0.1 1
Adaption to stratification 0.0 0.5 0.5 0.0 0.5 0.1 1
Adaption to shear 0.0 0.5 0.0 0.5 0.5 0.1 1

Fig. 2. The salinity distribution for the fixed grid (upper panel) and the adaptive
grid (lower panel) after half of a seiching period. The black lines denote the
positions of the layer interfaces.

Fig. 3. Salinity distribution for the 2D overflow experiment after 20 days of simulation. Th
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events discussed in, e.g., Feistel et al. (2006). The model domain
(see Fig. 3) has a horizontal resolution of 2100 m, 40 vertical levels
and is closed at both sides of the horizontal axis. The density field
does only depend on salinity here and a lock-exchange type inflow
is generated by initialising the salinity to be 25 psu for x 6 125 km
and 8 psu elsewhere. The induced horizontal pressure gradient
forces a dense bottom current over the sills into the subsequent ba-
sins (according to the Baltic Sea from left to right: Arkona Sea,
Bornholm Sea, Stolpe Furrow, Gotland Deep). Meteorological forc-
ing and earth rotation are neglected in the simulation. Fig. 3 shows
the salinity distribution after 20 days, when the basins are partially
filled and the residual part of the inflow has to propagate above the
already denser water in the basins.

The adaptive coordinates configured by the parameters in
Table 2 help here to reduce the vertical advection through the layer
interfaces by moving the layer interfaces with stratification. After
the basins are partially filled, the overflow will detach from the
sea bed and will entrude into its density horizon. The vertical grid
adaption aligns the coordinates along the isopycnals, thus reducing
the density gradient in flow direction.

In Fig. 4 the salinity, horizontal velocity, numerical mixing and
physical mixing is shown for the outflow from the first basin (de-
noted in Fig. 3) in the simulation for r-coordinates. The overflow is
resolved with few vertical layers and numerical mixing occurs
within the overflow. The pycnocline is distorted in the basins
due to the bottom-following coordinates and the coarse horizontal
resolution. The numerical mixing is highest when the overflow
reaches the denser water in the deeper basin, due to relatively
large horizontal density gradients and horizontal as well as vertical
e region within the gray rectangle will be investigated in more detail in Figs. 4 and 5.



Table 2
Parameters for the grid adaption in the multi-basin overflow experiment.

ahor alag adif aiso cN2 cS2 cd dsurf (m) dmin (m) tgrid (h)

0.1 0.1 0.3 0.1 0.2 0.0 0.3 20 0.1 3
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velocities. Significant reduction of numerical mixing is obtained in
the simulation with adaption to stratification and application of all
horizontal filters. The important, horizontal filters are the isopyc-
nal tendency and a small Lagrangian tendency here. The Lagrang-
ian tendency reduces the vertical advection through the layer
interfaces directly, the adaption to stratification will keep the res-
olution at the pycnocline and the isopycnal tendency aligns the
coordinates along the pycnocline in the horizontal. Fig. 5 shows a
better representation of the density field and less numerical mix-
ing in the overflow for the adaptive grid compared to the r-grid.
The high, numerical mixing at the position where the overflow
plunges into the denser water in the deeper basin still occurs as
a result of the vertical and horizontal advection in the already
adapted grid. However, the numerical mixing at the slope reduces
to a thin band of diffusive and anti-diffusive fluxes due to the
slightly moving density interface.

Burchard and Rennau (2008) evaluated the vertical integral of
the tracer variance decay for the physical and the numerical
mixing as measure for the influence of model numerics onto the
Fig. 4. Analysis of effective mixing processed inside the small subdomain in Fig. 3 for the
salinity variance decay, (D): physical variance decay. The physical tracer variance decay
simulation results. Fig. 6 shows that adaptive coordinates reduce
the amount of numerical mixing in the simulation by more than
45%. The physical mixing is slightly increased because of stronger,
remaining density gradients with decreased numerical mixing. In
the simulation with the adaptive vertical coordinates, the largest
contribution to the overall mixing is shifted from numerically in-
duced to physically induced mixing.

4.3. Seamount test case

The seamount problem (similar to Beckmann and Haidvogel,
1993) is the standard scenario for evaluating pressure gradient er-
rors in non-aligned vertical coordinate systems (Chu and Fan,
1997; Mellor et al., 1998; Song and Wright, 1998; Shchepetkin
and McWilliams, 2003). It is a simulation of a horizontally homo-
geneous stratification in a 5000 m deep ocean with a Gaussian-
shaped seamount of 4500 m height (see Fig. 7 for an overview).
The domain of 66 � 66 equidistant grid points and a horizontal res-
olution of 8 km is closed at the horizontal boundaries here and no
external forcing is applied. The density variations are only depend-
ing on temperature variations here and the initial temperature pro-
file is given by

TðzÞ ¼ 5þ 15ez=d; �H 6 z 6 0 ð47Þ

where d ¼ 1000 m and H ¼ 5000 m.
simulation with a fixed r-grid. (A): salinity, (B): horizontal velocity, (C): numerical
has been interpolated onto the tracer grid, given as coloured polygons.



Fig. 5. As Fig. 4 but for the simulation with an adaptive vertical grid.

Fig. 6. Horizontal distribution of vertically integrated and temporally averaged
numerical salinity variance decay in the upper panel and physical salinity variance
decay in the lower panel. For a quantitative comparison, the spatially integrated
and temporally averaged salinity variance decay is given as number in the legends.
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The mean kinetic energy of the system
Ekin ¼
1

2V

X
i;j;k

DVi;j;k u2
i;j;k þ v2

i;j;k

� �h i
ð48Þ
is calculated as measure for the pressure gradient error, where
DVi;j;k are the grid cell volumes, where i; j; k denote the grid cell
numbering in both horizontal and the vertical direction, ui;j;k and
v i;j;k are the cell-mean velocities and V is the total volume of the
domain. The evolution of the mean kinetic energy is then shown
for 10 days of a full baroclinic simulation, as an indirect measure
of the pressure gradient error. The simulation period is kept short
in order to have only a small impact by other model techniques
as the advection and turbulent mixing schemes. Besides, the grid
adaption is expected to reduce the initial error in the pressure gra-
dient calculation without having a direct influence on reducing the
long-term envolving vorticity error.

Different vertical coordinate systems are applied to the system:
A r-grid, a s-grid with zooming to the surface and a set of adaptive
grids. For the experiments the pressure gradient formulation (PGF)
by Shchepetkin and McWilliams (2003) (labelled as ShMcW03 in
the following) is applied, since it is widely used in the ocean mod-
elling community. The sigma grid experiment is additionally set up
with a standard Jacobian PGF (Mellor et al., 1994) in order to show
differences due to an improved PGF.



Fig. 7. The initial temperature distribution for the seamount experiment with 20 vertical r-layers. The black lines denote the layer interfaces. In further plots, the part of the
domain denoted by the gray box is shown.
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For all the grid adaptions, the Lagrangian and isopycnal ten-
dency are switched off, but filters for layer heights ðadif ¼ 0:2Þ
and interface positions ðahor ¼ 0:5Þ are applied. Both filters allow
for a smooth layer interface distribution. A strong filtering of inter-
face positions is assumed to reduce the pressure gradient errors
significantly, but will continuously lift the interface of the bottom
layers around the seamount. Only a small amount of interface po-
sition filtering is applied to keep realistic vertical resolutions here.
The Table 3 shows the parameters used for grid adaptions in the
seamount experiments.

The adaptive grids are pre-adapted for the first 50 time steps,
starting from a sigma grid, in order to avoid kinetic energy contri-
butions due to an initial movement of the whole grid towards a
balanced, initial layer distribution in terms of the adaption. The
pre-adaption creates a balance of the impacts by the initial density
profile and the bathymetry. The initial temperature profile is inter-
polated onto the model grid afterwards, as also done for the sigma
and the zoomed, but fixed grid.

4.3.1. Classical setup
Fig. 8 shows the layer distribution for the different experiments.

For the adaptive grids, the lower layers congregate at the top of the
seamount and are released from the sea bed successively with
depth as a result of the filter for interface positions. The evolution
of kinetic energy in Fig. 9 shows a range of 3.5 orders of magnitude.
The highest kinetic energy is found in the r-coordinate system
with the standard Jacobian PGF. A decrease of two orders of mag-
nitude is obtained by using the ShMcW03 PGF. By applying a
zooming towards the surface, the kinetic energy is decreased
slightly again. The adaptive grids show a generally but only slightly
higher kinetic energy than the r-coordinate experiment with the
same PGF, which is mainly related to the model reaction at the sur-
face. The adaption to stratification needs a strong zooming towards
the surface to keep resolution at the surface. The vertical optimisa-
tion is limited here because there are not enough layer interfaces
close to the surface for the initial sigma grid. A good adaptive grid
with even less kinetic energy after 10 days of simulation is created
by just a zooming towards the surface and the horizontal filtering.
The resolution is higher at the surface but still sufficient in the dee-
per parts of the ocean compared to the adaption to stratification.
Compared to the fixed, zoomed grid, the filtering in the adjusted
Table 3
Parameters for the grid adaptions in the seamount experiments.

Adaption to cN2 cS2 cd dsurf (m) ahor adif

Only filtered interface position 0.0 0.0 0.0 200 0.2 0.5
Zooming to surface + filter 0.0 0.0 0.3 200 0.2 0.5

N2 þ filter 0.05 0.0 0.0 200 0.2 0.5

N2 þ zoomingþ filter 0.05 0.0 0.3 200 0.2 0.5

N2 þ strong zoomingþ filter 0.05 0.0 0.6 200 0.2 0.5
the layer interfaces horizontally, which turns out to be beneficial.
In the classical setup, strong pressure gradient errors occur in the
surface layer. Although the layer interfaces are not as steep as next
to the seamount, the implied along-layer density gradient is strong,
due to the exponential temperature profile. A strong vertical den-
sity gradient exists by definition in the surface layer, which is
not resolved by the model grid.

4.3.2. Mixed-layer setup
The standard seamount experiment showed that zoomed, but

fixed grids have good performance without the grid adaption over-
head, if the region of interest is located at the surface or the bot-
tom. A second experiment with an expanded mixed layer will
show the advantages of the grid adaption in such a scenario. The
mixed layer is extended to the upper 450 m in the domain in the
second experiment. The grid adaption will include now alignment
of the grid layers with the thermocline, which cannot be achieved
with a zooming to the surface only. Fig. 10 shows the same exper-
iments as for the standard setup but with a mixed-layer initial
temperature profile. Without including a zooming towards the sur-
face for the adaptive grids, the mixed layer is resolved with very
few grid layers only. This does not constrain the density profile
by the layer distribution, but the grid is pathologic in terms of real-
istic ocean modelling, when air-sea interactions are expected.

In the temporal evolution of the kinetic energy in Fig. 11, higher
kinetic energies can be found due to the pressure gradient error by
sloping coordinates at the pycnocline. The advantage by zooming
towards the surface is insignificant in terms of kinetic energy evo-
lution for the fixed grids. The kinetic energies are still reduced by
one order of magnitude with applying a higher-order pressure gra-
dient scheme compared to the standard Jacobian scheme. By
applying the grid adaption, a reduction of kinetic energy by again
up to almost one order of magnitude can be found. The pure hori-
zontal filtering again induces less kinetic energy than the fixed
grids, but the adaption to stratification in addition with the zoom-
ing towards the surface is most beneficial here. In the scenario,
where a pure zooming to the surface cannot improve the pressure
gradient calculation, the adaptive vertical grids show an improve-
ment compared to fixed grids, when adapting the coordinates to
stratification. The horizontal filtering is then used as control on
the regularity of the grid. Additionally, the resolution at the pycno-
cline is improved such that all the physical processes at the pycno-
cline will also benefit in realistic simulations.

4.4. Coastal upwelling

A last experiment shows the interaction of different processes
and the performance of vertically adaptive coordinates in a full-
physics scenario. The model domain is an infinitely long channel
of parabolic shape and initialised with a horizontally homogeneous
temperature stratification. Fig. 12 shows the temperature distribu-



Fig. 8. The layer distribution (black lines) and the temperature (grayscale) for the different vertical discretisations in the classical seamount experiment.

Fig. 9. The temporal evolution of mean kinetic energy for the different vertical discretisations in the classical seamount experiment.
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Fig. 10. The layer distribution (black lines) and the temperature (grayscale) for the different vertical discretisations in the extended mixed layer seamount experiment.

Fig. 11. The temporal evolution of mean kinetic energy for the different vertical discretisations in the extended mixed layer seamount experiment.

82 R. Hofmeister et al. / Ocean Modelling 33 (2010) 70–86



Fig. 12. Cross-channel slice in the coastal upwelling experiment, showing the
initial temperature distribution for 50 r-layers.

Fig. 13. The cross-sectionally integrated, numerical (upper panel) and physical
(lower panel) tracer variance decay averaged over time for different vertical
discretisations for the upwelling experiment. The labels (a)–(d) denote character-
istic periods, which are discussed in the text.
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tion for a cross-channel slice. At a latitude of 55 �N, a wind stress of
0.2 Pa (constant in space and time) in along channel direction is ap-
plied at the surface, which causes upwelling at the left-hand side of
the shown channel slice.

For having an infinite long channel, the model is configured to
simulate a minimal set of two tracer and two velocity points in
along-channel direction and periodic boundary conditions con-
necting the down- and up-stream side of the domain. The grid
adaption is expected to resolve the temperature stratification well
and follows the vertical displacement of the pycnocline. On the
other hand, resolution should not be lost at the surface, when
the wind-induced surface shear has to be resolved as long as the
wind is active. The main goal is to increase the resolution at the
pycnocline as well as at the surface such that the numerical mixing
is reduced. In the adaptive grid mode, a pre-adaption of the layers
to the initial condition of 50 iteration steps was applied. The three
discussed adaptive grids are (A) adaptive to shear and stratification
with a grid timescale of 1 h, (B) like (A), but with a grid timescale of
2 h (C) adaptive to shear only with a grid timescale of 2 h, with the
parameters as listed in Table 4.

In Fig. 13, the mean numerical and physical tracer variance de-
cay are shown for different vertical discretisations. The tempera-
ture distribution looks similar for the different vertical
discretisations, so that the evaluation of the numerical mixing
shows the real advantages regarding long integration periods for
realistic simulations.

Most of the curves of the numerical mixing show a characteris-
tic profile as denoted with (a)–(d) in Fig. 13. In addition, the verti-
cal profiles of the temperature in the centre of the channel are
shown with the cross-channel resolution in Fig. 15. The adaptive
grid shows a very similar vertical profile, meaning the same phys-
ics, as the simulation with the fixed grid.:

(a) During the first 3 h, the currents due to the onset of wind are
developing without generating strong across-channel flow
near the bed. The numerical mixing remains weak in that
period. The adaptive grids are further zooming towards a
balanced state of grid adaption for the initial density distri-
bution. The used third-order TVD scheme even enhances the
gradients by numerical un-mixing with gaining resolution at
the pycnocline. The anti-diffusive part of the advection
scheme (depending on the choice of the limiter) is adding
up to a global un-mixing for a short period at the beginning
Table 4
Parameters for the grid adaptions in the upwelling experiments.

Grid No. ahor alag adif aiso cN2 cS2 cd dmin (m) tgrid (h)

(A) 0.0 0.0 0.3 0.0 0.2 0.1 0.0 0.05 1
(B) 0.0 0.0 0.3 0.0 0.2 0.1 0.0 0.05 2
(C) 0.0 0.0 0.3 0.0 0.0 0.1 0.0 0.05 2
of the simulation. At the same time, numerical mixing
started with the zooming of the layers towards the wind
induced shear region near the surface. The integrated effect
of the initial layer re-distribution is adding up back to zero
after 3–4 h of simulation and can further be compared with
the fixed grid simulations. Also Burchard and Rennau (2008)
found that TVD schemes can increase the integrated tracer
variance.

(b) When the cross-channel currents are developing due to rota-
tion and the upwelling is starting, then the dense water is
advected in along-layer direction in the near bed layers. This
causes a huge amount of the overall numerical mixing and
cannot be decreased by the usage of adaptive vertical grids.



Fig. 14. Cross-channel slices in the coastal upwelling experiment, showing the temperature distribution for 50 vertical layers and the best grid adaption in terms of the
numerical mixing.
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(c) After 12 h, when geostrophical adjustment is almost estab-
lished (note that the inertial period is 14.6 h), the upwelling
builds an internal pressure gradient balancing the barotropic
pressure gradient and mainly turbulent mixing takes place,
see times 12.5 and 15 h in Fig. 14. The numerical mixing is
very low during the physical mixing process, thus the tem-
poral mean is decreased slightly.

(d) After 17 h, the mixing and re-circulation on the shallow, left-
hand side of the channel reduces the internal pressure gradi-
ent and forces a further movement of dense water with
strong vertical component. The numerical mixing increases
again for the fixed grid, whereas the grid adaption follows
the vertical movement and additional, significant numerical
mixing is avoided. The double resolution, fixed grid also
shows only a very small amount of additional numerical
mixing.

The fixed grid in double vertical resolution reduces the mean
numerical mixing for the shown period by 25%. With grid adaption
at the lower vertical resolution, the numerical mixing is another
10% less than for the double vertical resolution. In Fig. 13, also
the grid adaption to only current shear is shown partially. The
resulting grid (not shown) looks promising, because the shear
mostly occurs also at pycnoclines. But the grid adaption is moving
the layer interfaces through the pycnocline at the beginning of the
simulation, where only the surface shear is target of the vertical



Fig. 15. The vertical temperature profile for the deepest point in the channel is
shown for the adaptive and fixed grid together with two vertical lines denoting the
vertical positions of tracer points in the water column. The temperature axis is valid
for the 1 h profile, each further profile is shifted by 0.5 �C per profile.
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grid adaption. The numerical mixing does not destroy the pycno-
cline completely in this case, but for realistic applications with a
multiple on- and off-set of wind events, a background stratification
might be mixed up for long integration periods.

Additionally to the numerical mixing, the mean physical mixing
is evaluated for the different grids. All the curves show a similar
evolution and are levelling out at about 97% of the overall mixing
for the whole model domain. The differences due to the different
vertical grids for the physical mixing are much higher than for
the numerical mixing. Here, the model grid is determining the per-
formance of the mixing scheme such that even less physical mixing
is found for the adaptive grids. In spite of the lack of an analytical
or observed solution, the result is still remarkable since the differ-
ence between the fixed and the adaptive grids grows when the
density interface is displaced.

The coastal upwelling experiment shows the performance of
the grid adaption in a full physics simulation. The integration time
of 24 h is short, but the analysis of the numerical mixing shows
that the grid adaption reduces the numerical mixing even more
than the doubling of the vertical resolution. The simulated physical
scenario is not changed significantly by the grid adaption, but the
resolution at the pycnocline is higher than for the fixed grid and
the grid is following the stratification. This supports a good repre-
sentation of the physical processes in the model such as mixing in
a stratified regime and advection along isopycnals.
5. Conclusions

A method for using non-uniform adaptive vertical grids is pre-
sented here. It is easy to implement the technique into other ocean
models than GETM, even for models with unstructured grids. In the
latter case, it should be possible to combine horizontal and vertical
grid adaption. All other model techniques such as advection, pres-
sure gradient or turbulence closure schemes are not affected by the
grid method. The computational overhead is 30–40% in average as
calculated from model run time and refers to a compilation with
standard optimisation settings running on a standard Linux PC.
This is computationally less expensive than doubling vertical reso-
lution of fixed coordinates and still reduces numerical discretisa-
tion errors more effectively.

It is shown that adaptive vertical grids are reducing the numer-
ical mixing substantially for a set of idealised examples with re-
spect to know problems in ocean modelling such as internal
seiching in stratified basins or dense overflows. The physically-
motivated tracer mixing in the model can be enhanced by a re-
duced numerical tracer variance decay. Generally, the numerical
mixing is reducing the performance of the turbulent mixing
schemes, which have been carefully calibrated by means of theo-
retical considerations, and field and laboratory data.

Further, one example shows that the pressure gradient error
can be considerably reduced by the adaptive grid method. There
is evidence that these benefits will reduce uncertainties in model
results of stratified seas, which has to be shown for realistic cases
in the future.

The optimal parameters controlling the grid adaption are vary-
ing depending on the scenario in the experiments shown here. This
is due to the different horizontal and temporal scales in the exper-
iments. It turns out to be beneficial to use mainly the grid adaption
to stratification and the horizontal filter of grid layer heights. In
dynamically active cases, a shorter timescale and Lagrangian ten-
dency for the grid adaption are additionally advantageous in order
to decrease the numerical mixing.

The parameter space for improvements of model results needs
to be further explored by carrying out tests in realistic applications.
The potential of the adaptive grid method is to provide new ways
to improve model results for simulations where fixed (bottom-fit-
ted) coordinates give only insufficient results. Umlauf et al. (sub-
mitted for publication) applied the presented grid adaption
method presented here to strongly stratified shear flow in order
to approach isopycnal coordinates in these parts of the model do-
main. There, non-isopycnally aligned coordinates give intolerable
discretisation errors due to an aliasing between isopycnals and grid
lines. For simulations with long integration periods, reduced
numerical mixing due to adaptive grids helps to preserve the strat-
ification near steep slopes.

The modeller’s knowledge of the expected regimes in the simu-
lation can be used for controlling the grid adaption. A changing re-
gime such as a seasonally moving thermocline or substantial tracer
variation due to fluxes through open boundaries results in a
dynamical re-distribution of the grid towards the specified optimi-
sation of the vertical resolution.
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