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Abstract Current spatial interpolation products may be
biased by uneven distribution of measurements in time. This
manuscript presents a detrending method that recognizes
and eliminates this bias. The method estimates temporal
trend components in addition to the spatial structure and
has been implemented within the Data Interpolating Varia-
tional Analysis (DIVA) analysis tool. The assets of this new
detrending method are illustrated by producing monthly
and annual climatologies of two vertical properties of the
Black Sea while recognizing their seasonal and interannual
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variabilities : the mixed layer depth and the cold content of
its cold intermediate layer (CIL). The temporal trends, given
as by-products of the method, are used to analyze the sea-
sonal and interannual variability of these variables over the
past decades (1955–2011). In particular, the CIL interannual
variability is related to the cumulated winter air temperature
anomalies, explaining 88 % of its variation.
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1 Introduction

Climatologies, i.e., average fields interpolated from in situ
data gathered over a large period, are widely used in earth
sciences. However, monitoring data are typically heteroge-
neously distributed in time and space, leading in some cases
to flawed analysis if this heterogeneity is not adequately
accounted for. For instance, if the mean annual temperature
field over the Northern Hemisphere is computed with all
the available data, the result will overestimate the true mean
temperature, since there are more measurements in summer
than in winter. Similarly, the mean temperature field will
be biased if data from cold and warm years are not equally
represented in all regions.

To remedy this impact, which occurs when unavoid-
able heterogeneous distribution of data is combined with
high variability, we present a detrending method (Duchon
1977) that has been implemented in the existing Data Inter-
polating Variational Analysis (DIVA, Troupin et al. 2012)
tool.

http://dx.doi.org/10.1007/s10236-013-0683-4
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The cases of the Black Sea cold intermediate layer (CIL)
(e.g., Stanev et al. 2003) and mixed layer depth (MLD) (e.g.,
Kara et al. 2009) are ideal examples of application since
(1) the CIL (resp. MLD) exhibits an important interannual
(Oguz et al. 2006) (resp. seasonal) variability and (2) sam-
pling in the Black Sea is characterized by strongly uneven
temporal coverage.

The Black Sea is an enclosed basin, characterized by a
strong permanent halocline at approximately 150-m depth,
which separates the surface layer, receiving substantial
freshwater inputs from several large rivers discharging
mainly to the northwestern shelf and the deep waters receiv-
ing saltwater inflows from the Mediterranean Sea through
the Bosphorus. The surface layer is advected by a basin-
wide cyclonic current, referred to as the rim current and
further subdivided in two main gyres (Korotaev et al. 2003),
which intensifies in winter and controls the curvature of the
halocline (shallower in the center of the basin, deeper in the
periphery).

Cold and dense waters are formed in winter, when sur-
face cooling breaks down the summer thermal stratification
and the water column above the halocline becomes fully
mixed. The convective sinking of the cold surface waters is
limited by the permanent halocline because of denser saline
water below. This mechanism leads to the formation of a
minimum temperature layer located between the halocline
(∼100–150 m) and the summer thermocline (∼20–50 m),
known as the cold intermediate layer. Stanev et al. (2003)
located the main regions of CIL formation: (1) west of the
Crimea peninsula, where surface-cooled fresh waters are
mixed with underlying saltier waters; and (2) in the central
basin where the winter outcropping of the deep isopycnals
allow the cooling to penetrate directly to the density lev-
els of the CIL (which is not possible for the northernmost
part of the northwestern shelf area where surface cooling is
nevertheless stronger).

The detrending method applied in this work provides
monthly climatological fields of the MLD and the CIL
cold content (CCC), i.e., the temperature anomaly inte-
grated over the CIL vertical extension (Section 3.1.1), while
recognizing the impact of their seasonal and interannual
variabilities on the data representativity. The trends assigned
to each year by the methodology provide long-term time
series used to investigate the interannual variability of MLD
and CCC and their relationship to atmospheric drivers.

While Oguz et al. (2006) and Capet et al. (2012) showed
that the CIL follows the interannual variability of air tem-
perature, Stanev et al. (2003) identified that it is not entirely
renewed every year and that the remaining CIL at the end
of summer prepares the winter CIL formation for the next
year. Also, Piotukh et al. (2011) indicated the preponderant
influence of winter mean (rather than annual mean) sur-
face air temperature on the thermohaline characteristics of

the cold content for the next summer. This indicates that
the Black Sea hydrodynamics, and in particular regarding
the CIL, present regular seasonal cycles, and that interan-
nual variability may be perceived as year long persistent
anomalies.

The rim current, which derives mostly from the surface
wind vorticity (negative curl causes strong rim current),
is known to affect the Black Sea vertical structure but
its specific impact on the CIL is difficult to appreciate
directly because the occurrence of cyclonic wind patterns is
correlated to that of cold air temperature (Capet et al. 2012).

The paper is organized as follows: Section 2 provides
a short description of DIVA and describes the detrending
procedure and its implementation within DIVA. Section 3
presents an application of the detrending methodology on
the Black Sea MLD and CCC and an analysis of their tem-
poral trends. The conclusions concerning the Black Sea
and general limitations of the method are discussed in
Section 4.

2 Data detrending

2.1 The DIVA method

DIVA stands for Data Interpolating Variational Analysis. It
is a method used to interpolate spatially inhomogeneously
distributed data. The principle of DIVA is to construct an
analyzed field ϕ that satisfies a set of constraints expressed
in the form of a cost function over a domain �. Typically,
in oceanography, � is the part of the considered domain
covered by the sea. The cost function is made up of (1) an
observation constraint, which penalizes the misfit between
data and analysis; (2) a smoothness constraint, which penal-
izes the irregularity of the analyzed field (gradients, Lapla-
cian, etc.); and (3) a behavior constraint, which takes into
account physical laws (advection, diffusion, sinks/sources).

In this paper, only the first two constraints will be consid-
ered. In the particular case where the observation constraint
is much stronger than the smoothness constraint, the results
of the minimization of the cost function is a spline inter-
polation: the analysis has to contain all the data points.
Such a solution is not suitable in the case of atmosphere or
ocean observations because it does not consider the noise
present in the data (measurement errors, but also represen-
tativity errors). In other words, the estimated field should
mimic the observations rather closely, although maintaining
a reasonable degree of smoothness to avoid over-fitting the
data.
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2.1.1 Formulation

Let us assume that we work with data anomalies, i.e., a
reference (or background) field is subtracted from the data
points prior the analysis. Considering a series of N data
anomalies di at locations (xi, yi), the cost function reads in
Cartesian coordinates:

J [ϕ] =
∫
�

(
∇∇ϕ : ∇∇ϕ + α1∇ϕ ·∇ϕ + α0ϕ

2
)

d�

+
N∑
i=1

μi [di − ϕ(xi, yi)]
2 = Jsmooth[ϕ] + Jobs[ϕ],

(1)

where μi , α0 and α1 are coefficients related to character-
istics of the dataset (Section 2.1.2). ∇ is the horizontal gra-
dient operator and ∇∇ϕ : ∇∇ϕ = ∑

i

∑
j (∂

2ϕ/∂xi∂xj )

(∂2ϕ/∂xi∂xj ), the generalization of the scalar product of
two vectors.

The first term of (1) measures the spatial variability (cur-
vature, gradient, and value) of the analyzed field and is
identified as the smoothness constraint. The penalization of
second derivatives is similar to the smoothing spline formu-
lation (e.g., Wahba 1975; Wahba and Wendelberger 1980).
The second term is a weighted sum of data analysis misfits
and is identified as the observation constraint: it tends to pull
the analyzed field towards the observations. The analyzed
field ϕ(x, y) is obtained as the balance between observation
and smoothness constraints, once the parameters have been
determined. Further details about the DIVA interpolation
technique are given by Brasseur et al. (1996) and Troupin
et al. (2013).

2.1.2 Analysis parameters

By using a nondimensional version of (1), it can be eas-
ily shown (e.g., Troupin et al. 2012) that the coefficients of
(1) are related to (1) the relative weights wi attributed to
each observation di , (2) the correlation length L, and (3) the
signal-to-noise ratio λ, according to the following:

α0 = 1

L4
, α1 = 2

L2
, μi = 4πλwi

L2
with

N∑
i=1

1

wi

= N.

These relations simply show that knowing L, λ, and wi

allows the determination of the analysis parameters α0, α0,
and μi of the cost function.

Some tools are implemented in DIVA in order to estimate
the values of L and λ, based on the data correlations and on
generalized cross validation (Brankart and Brasseur 1996;
Troupin et al. 2013).

2.1.3 Finite-element solver

The minimization of (1) is solved with a finite-element tech-
nique: the domain of interest � is covered by a mesh made
up of triangular elements (see Fig. 2a), and in each ele-
ment, the solution ϕe is expanded in terms of connector
values, which ensure that the solution is continuously deriv-
able (Brasseur et al. 1996), and shape functions, which serve
to compute the field at any desired location.

2.2 Implementation of detrending in DIVA

If we define one group (e.g., the year), each data point is
in one and only one class Cj (e.g., 1990, 1991, etc.) of this
group. The data analysis misfit term of the functional (1)
can be rewritten by including an unknown trend value for
each class (dC1, dC2, . . .):

Jobs[ϕ] =
∑
i∈C1

μi [di − dC1 − ϕ(xi, yi)]2

+
∑
i∈C2

μi [di − dC2 − ϕ(xi, yi)]2 + . . . (2)

If the function ϕ(x, y) were known, minimization with
respect to each of the unknowns dCj would yield

dC1 =
∑

i∈C1
μi [di − ϕ(xi, yi)]∑

i∈C1

μi

(3)

and similarly for the other classes: the trend for each class
is the weighted misfit of the class with respect to the overall
analysis. Obviously, the solution ϕ is not known, since it is
actually the result of the minimization process, but this issue
is solved by iterating and starting with an analysis without
detrending. Using the field ϕ, we calculate a first guess of
the trends in each group and subtract it from the original
data. Following this, a new analysis is performed, the trends
are recalculated, and the iterations continue until a specified
convergence criterion is fulfilled.

The procedure can be generalized with several groups
of classes (e.g., year, month, time of the day, etc.); in this
case, detrending is applied hierarchically: (1) Trends for the
first group are calculated and removed from the data; (2)
The second group is treated and so on; (3) Once the data
have been detrended, a new DIVA analysis is performed; (4)
With the new analysis, the data analysis misfit (or residual)
can be reused to improve the trend estimates. The procedure
is repeated a predefined number of times, which ensures
convergence in all the cases we tested.
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Fig. 1 Example of a reconstruction without detrending (a), with detrending (b), and the trends obtained from the data (c–e), where the x-axis
indicates the different classes of the three groups. The color bar is common to a and b

2.3 Synthetic example

To illustrate how the detrending helps to reconstruct the spa-
tial distribution of a time-varying variable, we consider the
following artificial example: A variable with a fixed and
known spatial distribution (a sin-cosine structure) is mod-
ulated by a seasonal cycle, a daily cycle, and interannual
variations. Samples are taken randomly in space and time
and are then used to reconstruct the spatial distribution with
DIVA. The results with and without considering detrending
are compared.

In this example, the groups considered for the detrend-
ing are thus years, months, and hours. The corresponding
classes are the discrete values of these (e.g., 0, 1, . . . , 23, for
the group “hours”).

Without detrending, each observation is considered an
equal representative of the same static field, disregarding
the temporal structure of the data, which amounts to ignore
the nonsynoptic character of punctual sampling and results
in a flawed analyzed field, dependent on the sampling
distribution (Fig. 1a).

When considering the detrending, the periodic structure
is perfectly recovered (Fig. 1b). Note that the reconstruction
is perfect in this case because the temporal trend is spatially
homogeneous.

Along with the detrended spatial analysis, the tool also
provides the trend identified for each group (Fig. 1c–e)
which may also be of direct scientific interest when the tech-
nique is applied to field observations, as shown in the next
section.

3 Real-case application: the Black Sea mixed layer
depth and cold intermediate layer cold content

3.1 Materials

3.1.1 Data extraction

While interpolation methods are often applied on variables
that may be directly measured (e.g., sea temperature, salin-
ity, etc.), these examples address vertical properties derived
from vertical profiles: the CCC (e.g., Stanev et al. 2003) and
the MLD (Kara et al. 2009).

Profiles of temperature and salinity are obtained from the
World Ocean Database (Boyer et al. 2009) in the box 40◦–
47◦30◦N, 27◦–42◦E for the period of 1955–2011.

Since the CIL has a minimal depth deeper than 50 m,
analysis (interpolation and detrending) are only carried out
for the deeper parts of the Black Sea (>50 m). The CCC
corresponds to the relative heat deficit in the CIL and is thus
expressed negatively in terms of joules per square meter
(Piotukh et al. 2011). It is computed as the vertical integral
of the temperature anomaly over the vertical extension of
the CIL, limited by the T = T0 isotherms and a density
criterion (ρ > 1,014 kg m−3) (Stanev et al. 2003):

CCC = cρ

∫
CIL

[T (z)− T0]dz, (4)

where ρ is the density, and c the heat capacity. The value of
CCC is set to 0 if the profile covers the usual CIL vertical
extent without displaying temperatures lower than T0. His-
torically, the value T0 = 8 ◦C has often be used to define
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the CIL (Blatov et al. 1984). However, according to recent
observations that attest the presence of the CIL layer as a
physical phenomenon without temperature below 8 ◦C, we
rather use the value T0 = 8.35 ◦C recommended by (Stanev
et al. 2013). In order to allow an unbiased estimation of the
CIL cold content, eligible profiles should (1) contain a mini-
mum of six measurements, (2) contain an upper observation
above 30 m, and (3) extend to lower boundary of the CIL
(or close to the bottom).

For the MLD, the analysis are performed on the whole
Black Sea and Sea of Marmara, while the Azov Sea was
excluded from the analysis for lack of data. The MLD is
defined as the depth where a density difference 	ρ com-
pared to the 3-m depth density reaches a threshold of
0.125 kg m−3 as proposed for the Black Sea by Kara et al.
(2009). Eligible profiles for the MLD should (1) contain
a minimum of four measurements, (2) contain an upper
observation above a 3-m depth, and (3) present a density
difference bigger than 0.125 kg m−3.

3.1.2 Data distribution

The monthly distribution of data is heterogeneous, with a
minimum of 892 selected profiles in January and a max-
imum of 3,131 in May. The winter-summer imbalance is
evident: the July–September period has 60 % more profiles
than in the January–March period. The interannual data dis-
tribution is also quite irregular with a majority (59 %) of
profiles between 1982 and 1995.

While the spatial coverage is sufficient for the considered
analysis, selected profiles are generally more concentrated
close to the coast than in the central basin and are more
numerous in the western basin than in the eastern part (pro-
file locations are shown for March in Figs. 2 and 3 and for
all months in the Supporting Material).

3.1.3 Data weighting

In order to reduce the influence of specific missions with
a large number of profiles concentrated in a small area
and within a relatively short period, a different weight wi

(Section 2.1.2) is applied on each data point, according to
wi = 1/Ni,

with Ni as the number of measurements within the same
month and same year and within a 0.2◦ radius around the i th

data point.

3.1.4 Atmospheric predictors

Meteorological time series used to analyze the CIL interan-
nual trend are constructed from the ERA-40 (1958–2000;
1.125◦ resolution) and ERA-interim (1980–2012; 0.75◦ res-
olution) reanalysis, provided by the European Center for

Medium-Range Weather (ECMWF) data server. The 1958–

2012 merged time series are constructed by unbiasing the
distinct datasets in order to equal the distinct averages over
the overlapping period (1980–2000). The time series con-

structed as potential predictors concern winter (December–
March) and summer (May–September) air temperature and
wind curl anomalies. For a given year (e.g., 1994), Tw refers
to the winter temperature of this year (December 1993 to

March 1994), while Tw−1 refers to that of the previous year
(December 1992 to March 1993), and so on.

3.2 Results

3.2.1 Climatologies

Annual and monthly climatologies for CCC and MLD may
be found in the Supporting Online Material, both as pic-
tures and NetCDF files. These climatologies are suitable for

further use (e.g., in modeling studies) and benefit from the
general assets of the DIVA interpolation methods (Troupin
et al. 2012, 2013). For instance, previous MLD climatolo-
gies presented by Kara et al. (2009) does not account for the

presence of coast during spatial interpolation, resulting in
a contamination of the Black Sea field from profiles issued
from the Marmara Sea. In the following, we focus on a few
selected analysis to illustrate specific issues of the DIVA

detrending tool.
Consistently with the current knowledge on the Black

Sea circulation, the annual MLD climatology (Fig. 3)

reveals deeper mixed layer on the periphery of the central
basin. Stronger mixing appears clearly all along the shelf
break, from the Crimea Peninsula, where the region of con-
vective CIL formation is well marked, to the Bosphorus

entrance. On the northwestern shelf, the freshwater input
maintains a shallow mixed layer in the vicinity of the river
mouths.

The CCC climatologies indicates a region of persistence

of the CIL layer located west of the Crimea Peninsula,
between the shelf slope and the rim current. During summer,
high cold content is maintained along the southern periph-
eral region, where recurrent anticyclonic eddies between

the coast and the rim current induce a deep halocline level
(∼110–140 m) which gives space for the CIL well below
the warm surface waters. This is particularly visible in the

south-eastern region of the strong semipermanent Batumi
eddy (e.g., Korotaev et al. 2003). The ratio between CCC
in the Rim current zone and the central part is in agreement
with the ratio [1.5–2.5] given by Piotukh et al. (2011).
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3.2.2 Effects of the detrending on the analysis

The magnitude of the CCC interannual variability is slightly
higher than that of its seasonal variability. The major-
ity of data has been collected during the period between
1985 and 1995 which was a “cold” period character-
ized by low air temperature and high CIL cold content
(Oguz et al. 2006; Piotukh et al. 2011; Capet et al.
2012). Because of this distribution, a classic analysis with-
out detrending gives more weight to these years, which
results in a bias towards high cold content in the annual
and monthly climatologies, not representative of the aver-
aged situation for the period of 1955–2011. The detrend-
ing procedure corrects this bias as illustrated by the
comparison of Fig. 2b, c and Fig. 2e, f, showing the
annual and monthly climatology for March (see Supporting
Online Material for the others months) obtained with and
without detrending. It is also worth mentioning that with-
out detrending, localized CIL minima are introduced to the
climatologies: these are artifacts resulting from irregular
data distribution across years and are eliminated with the
detrending method.

In the case of the MLD, seasonal variability is higher
than interannual variability. This example thus illustrates the
bias introduced this time by the uneven seasonal distribution
of the original data. As more data are available in summer
time, when the MLD is small, the classical analysis results
in annual climatology fields biased towards small MLD val-
ues,which is corrected by the detrended analysis (Fig. 3b, c).
Because of the low interannual variability, with respect to

the seasonal variability, the detrending method does not
impact much on the monthly climatologies.

3.2.3 Interpretation of the trends

As a by-product of the climatologies, DIVA provides the
trends assigned to each month and each year. The trend cor-
responding to one class (e.g., a given year) corresponds to
the averaged misfit of the data of this class with respect
to the overall analysis. Obviously, these temporal trends
still bear some representativity error due to the spatial
distribution of data, but this error is minimized by the
detrending procedure by comparison with the trends that
would obtained from the anomalies with respect to a basin-
wide average. In order to consider realistic values rather
than anomalies, the time series referred to as “trends” in
the following and depicted in Figures 4 and 5 are obtained
by adding the average value of the annual analysis to the
trends initially provided by DIVA. Compared to the time
series constructed by simply averaging the data within each
year, the present interannual trend allows a better consider-
ation of (1) uneven spatial distribution, because they rely on
the misfit with the climatological analysis rather than on the
absolute values, hence consider the spatial variability; and
(2) uneven seasonal distribution, because seasonal trends
are identified simultaneously, during the same iterative pro-
cedure. The temporal trends derived from the analysis are
therefore appropriate to study on the temporal dynamics of
the analyzed variable.
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Fig. 2 Cold content of the Black Sea CIL. a Values obtained from the
vertical profiles and annual climatologies interpolated using DIVA b
without and c with detrending. d Values obtained from the vertical pro-

files for March and monthly climatologies interpolated using DIVA e
without and f with detrending
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Fig. 3 Mixed layer depth. a Values obtained from the vertical profiles
and annual climatologies interpolated using DIVA b without and c with
detrending. d Values obtained from the vertical profiles for March and

monthly climatologies interpolated using DIVA e without and f with
detrending

In the following, we use the trends to compare the
range of seasonal and interannual variability of CCC and
MLD and assess whether systematic relationships between
the interannual trends and atmospheric conditions may be
identified.

The seasonal trend is very clear in the case of MLD
(Fig. 4b), revealing the stronger mixing in February, the
sharp onset of the thermocline from March to May, and
the slower deepening of the mixed layer from August to
February.
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Fig. 4 a Interannual variability of the mixed layer depth as identified
by the DIVA detrending tool over the period of 1955–2011, (filled cir-
cles, years with more than 50 eligible profiles; empty circles, years
with more than 25 and less than 50 eligible profiles). No significant

relationship between the annual anomalies and atmospheric predic-
tors may be derived. b Climatological seasonal cycle reconstructed by
DIVA with detrending
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Fig. 5 a Interannual variability of the CIL cold content as identified
by the DIVA detrending tool over the period of 1955–2011 (black cir-
cles and dotted lines) and predicted by a stepwise regression model
(plain gray line; the shaded area represents the confidence bounds,
p < 0.01) using the cumulated anomalies of winter air tempera-
ture as predictors. Only the years with more than 50 eligible profiles
are considered to compute the regression coefficients (filled circles);
other years containing more than 25 profiles are also indicated (empty

circles). The explanatory power of past anomalies allows one to infer
prediction for the 2013 CIL cold content, assuming average ±1 stan-
dard deviation for the unknown Tw value in 2013. b climatological
seasonal cycle reconstructed by DIVA with detrending. c Standardized
coefficients of the selected predictors: central value, p < 0.05 con-
fidence intervals. To allow the comparison with previous works, we
indicated on panels a and b the results obtained by using the historical
definition T0 = 8◦C (gray circles and dotted lines)

The seasonal trend of the CCC (Fig. 5b) indicates the
formation season from December to March, and then a first
decrease until May when surface warming erodes the upper
layer of the CIL, and then another decrease starting from
August when the MLD starts to deepen.

No systematic relationships between the interannual
trend of MLD and the selected atmospheric predictors could
be identified. This indicates that other factors influence this
fast responding dynamic (e.g., wind stress). On the large
scale, the interannual trend of MLD (Fig. 4a) depicts a slow
deepening from the 1960s to mid-1990s, and presumably a
shallowing afterwards, but the latter is hindered by the lack
of data for the last decade. This long-term tendency, also
visible in the case of CCC (Fig. 5a), is in agreement with the
long-term influence of North Atlantic Oscillation on the sea
surface temperature (Oguz et al. 2006; Capet et al. 2012).

The inertial dynamic of the CIL cold content results in a
more coherent signal of interannual variability. In that case,
a stepwise regression procedure could be used to express the
signal as a response to the atmospheric predictors.

We found that 4 years of winter temperature anomaly
was significant (p < 0.05) in describing the CIL variabil-
ity, explaining together 88 % of the signal obtained from
the detrending procedure (Fig. 5a). Summer and wind curl
predictors were discarded as nonsignificant by the stepwise

regression procedure. The preponderance of winter predic-
tors over summer predictors confirms the results of (Piotukh
et al. 2011).

The decreasing standardized coefficients (−0.86,−0.50,
−0.28, and − 0.18 for Tw , Tw−1, Tw−2, and Tw−3, respec-
tively; Fig. 5c) reflect the decreasing influence of past
winter air temperature anomalies.

Using predictors from past years only (Tw−1, Tw−2,
Tw−3) explains 20 % of the CIL variability, thus giving a
partial prediction ability, which was used to infer a predic-
tion interval for the year 2013 by considering the range of
average ±1 standard deviation for Tw for the unknown 2013
winter air temperature.

4 Conclusions

A detrending tool is integrated in the DIVA spatial inter-
polation tool to correct climatology analysis from the bias
caused by uneven temporal sampling over a period with
substantial temporal variability.

DIVA is applied to the mapping of the mixed layer depth
and cold content of the Black Sea CIL. These properties are
derived from the vertical profiles available for the period
of 1955–2011. The comparison of the reconstructed fields
obtained with and without detrending illustrates the ability
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of the method to rectify the monthly climatologies from the
bias caused by a higher availability of profiles during the
cold 1985–1995 period (CCC example), and the annual cli-
matologies from the bias caused by a higher availability of
profiles during the summer period (MLD example).

Moreover, the detrending procedure provides the user
with the temporal trends identified to unbias the spatial anal-
ysis. These trends may be used to analyze the temporal
variability of the considered variable.

As an example, the information on the interannual vari-
ability of the cold content of the Black Sea CIL is exploited
to evidence, through a stepwise regression analysis, the
cumulative effect of air temperature anomaly. Consid-
ered jointly, the winter air temperature anomalies of the
four past years explain significantly (p < 0.05) up to
88 % of the CCC interannual signal. Moreover, the iner-
tial dynamic of the CIL results in a part of explicative
power from the past predictors (i.e., air temperature anoma-
lies of the previous years), which gives a partial (20 %)
predictive ability concerning the CIL intensity for the year
to come.

The chosen example demonstrated the effect of the
most apparent representativity error: the one issued from
the seasonal and interannual variability, but the same
method could be used for other sources of representativ-
ity errors (e.g., diurnal variability, different instruments
or protocols, different databases, and different observation
depths).

In the same way that spatial analysis are corrected from
uneven temporal distribution, the temporal trends are partly
corrected from the influences of spatial uneven distribu-
tion as these are reconstructed from the anomalies between
data and the spatial analysis rather than from the anoma-
lies between data and a basin-wide average (see for instance
the discussion in Piotukh et al. (2011) concering the CCC
case). In its present form, however, the detrending procedure
still identifies trends which are considered as uniform over
the entire spatial analysis domain. This assumption should
be carefully considered for large domains where temporal
variability may differ across subregions. For instance, in
a domain that encompasses the equator and mid-latitudes,
the seasonal trend that will be removed is likely to be too
strong for the equatorial region and too weak for temperate
latitudes.

Also, the different trends (e.g., seasonal, interannual)
are considered to be independent and additive. While this
constitutes a valid first approximation, it may be expected
that seasonal variations between contrasting years differ in
reality by more than a simple constant. Extensive analy-
sis, exploiting the interannual trend to identify contrasting
periods, may consider partitioned datasets to evaluate the
consistency of the overall seasonal trend during these sub-
periods.

The relevance of climatological analysis computed over
large period affected by temporal variability is a general
question that has to be considered specifically for each
application. Appropriately, the detrending tool presented in
this study provides, along with the climatological product,
the additional temporal information needed to address this
question.
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