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Abstract. We present results of a multi-methodological ap-
proach to characterize the flow regime of West Ragnhild
Glacier, the widest glacier in Dronning Maud Land, Antarc-
tica. A new airborne radar survey points to substantially
thicker ice (> 2000 m) than previously thought. With a dis-
charge estimate of 13–14 Gtyr−1, West Ragnhild Glacier
thus becomes of the three major outlet glaciers in Dronning
Maud Land. Its bed topography is distinct between the up-
stream and downstream section: in the downstream section
(< 65 km upstream of the grounding line), the glacier over-
lies a wide and flat basin well below the sea level, while
the upstream region is more mountainous. Spectral analy-
sis of the bed topography also reveals this clear contrast
and suggests that the downstream area is sediment covered.
Furthermore, bed-returned power varies by 30 dB within
20 km near the bed flatness transition, suggesting that the
water content at bed/ice interface increases over a short dis-
tance downstream, hence pointing to water-rich sediment. Ice
flow speed observed in the downstream part of the glacier
(∼ 250 myr−1) can only be explained through very low basal
friction, leading to a substantial amount of basal sliding in the
downstream 65 km of the glacier. All the above lines of evi-
dence (sediment bed, wetness and basal motion) and the rel-
atively flat grounding zone give the potential for West Ragn-
hild Glacier to be more sensitive to external forcing com-
pared to other major outlet glaciers in this region, which are
more stable due to their bed geometry (e.g. Shirase Glacier).

1 Introduction

The overall mass balance of the Antarctic ice sheet is dom-
inated by a significant mass deficit in West Antarctica (Rig-
not et al., 2008; Pritchard et al., 2012). This is primarily
due to thinning and acceleration of glaciers (e.g. Pine Island
Glacier; Joughin et al., 2003) mainly driven by the loss of
buttressing from ice shelves (Schoof, 2010). Concurrently,
the trend in East Antarctica is weaker. The East Antarctic
ice sheet (EAIS) is only losing mass slightly, as increased
surface accumulation compensates mass loss through outlet
glaciers (Shepherd et al., 2012). While Miles et al. (2013)
observe a link between front migration and climate forcing, a
significant widespread thinning trend along the pacific coast
of the EAIS remains lacking.

Although East Antarctica is mainly continental, limited
observations in Dronning Maud Land (DML), show that the
ice sheet seaward of the inland mountains lies on a bed well
below sea level (BEDMAP2;Fretwell et al., 2013) and most
of the ice from the polar plateau is discharged through nu-
merous glaciers in between coastal mountain ranges. The ice-
dynamical consequences of such settings have yet to be ex-
plored. In this paper we investigate the marine boundary of
such a glacier system draining the EAIS in DML.

The coastal region of DML is characterized by numerous
outlet glaciers feeding into ice shelves (Fig.1a). They are
generally short in length but reach out to the continental shelf
edge. The stability of these ice shelves is primarily ensured
through the presence of ice rises and pinning points, making
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Fig. 1. Overview map of West Ragnhild Glacier, Dronning Maud Land, East Antarctica.(a) Dronning Maud Land. Ice flow speed is shown
on the same scale as for panel(b) (but white when< 15 myr−1; Rignot et al., 2011a). The grounding line is shown in purple (Bindschadler
et al., 2011). Rock outcrops are shown in brown (SCAR, 2012). The square shows the 400km×400km area covered by the map on panel(b).
The inset shows the coverage of panel(a). (b) West Ragnhild Glacier. Background colour shows the surface flow speed derived from satellite
interferometry and speckle tracking. Contours show surface elevations at 500 m interval (Bamber et al., 2009). From west to east, the
grounding line is defined on the basis of a pair of PALSAR images taken in 2007 (light grey) and two pairs of RADARSAT (middle grey and
dark grey) taken in 2000 (Rignot et al., 2011b). Black lines are the longitudinal and transverse radar profiles. Rock outcrops as in(a). SRM
and BM stand for Sør Rondane Mountains and Belgica Mountains, respectively.

the ice shelf locally grounded. Potential unpinning of these
ice shelves would inevitably lead to ice shelf speed up, which
makes them sensitive to marine forcing.

Of all glaciers in DML, West Ragnhild Glacier is the
widest (≈ 90 km) and longest. Its ice flow speed is al-
ready 100 myr−1 250 km upstream from the grounding line
(Fig. 1b). Based on the ice thickness data presented in this
paper, we estimate the grounding line mass flux to be 13–
14 Gtyr−1, which constitutes roughly 10 % of the total dis-
charge from DML (Rignot et al., 2008). This is of the same
order of magnitude as Shirase Glacier (13.8± 1.6 Gtyr−1;
Pattyn and Derauw, 2002) and Jutulstraumen (14.2 Gtyr−1;
Høydal, 1996), the other two major outlet glaciers in the
DML region.

The stability of West Ragnhild Glacier is most likely gov-
erned by the dynamics of its ice shelf which is dominated
by two important ice rises and several pinning points. While
rapid changes at the marine boundary have not yet been ob-
served,Rignot et al.(2013) point to an exceedance of basal
melt (underneath the ice shelf and at the grounding line)
over calving for several ice shelves in DML (including Roi
Baudouin Ice Shelf, downstream of West Ragnhild Glacier).
Melting at the grounding line 50 km west from West Ragn-
hild Glacier has been reported inPattyn et al.(2012), but its
magnitude is of the orders of tens of centimetres per year.

To understand what makes West Ragnhild Glacier one of
the three most significant mass outputs in DML, we investi-
gate its basal conditions using satellite remote sensing, air-
borne radar and ice sheet modelling. First, radar analysis
reveals the geometry of the bed. Second, we characterize

the roughness of the bed and its reflectivity through spec-
tral and bed-returned power analyses, which inform us of
the nature of the bed as well as of the water content. Fi-
nally, we estimate the basal friction through inverse mod-
elling to reconstruct basal motion. We subsequently discuss
the consequences of a marine-terminating East Antarctic out-
let glacier, characterized by a wet sediment and dominated by
basal motion/sliding.

2 Data acquisition

Ice flow surface velocities are generated based on
RADARSAT data acquired during the austral spring of 2000.
These velocities combine phase and speckle tracking offsets,
using methods that minimize the error of the final combined
product (Joughin, 2002). The resolution of the velocity data
is 500m× 500m, covering the main trunk of West Ragnhild
Glacier and its vicinity (Fig.1b).

The airborne radio echo sounding survey was carried out
on West Ragnhild Glacier during the austral summer 2010–
2011, resulting in one longitudinal (along-flow) profile and
seven transverse profiles (Fig.1b). The radar system em-
ployed a 150 MHz centre frequency and transmitted bursts
of 600 and 60 ns duration, toggling between the two bursts
(Nixdorf et al., 1999; Steinhage et al., 2001). The system
recorded at a rate of 20 Hz. For further signal-to-noise im-
provement, the data of same burst length were stacked ten-
fold, resulting in a horizontal resolution of 80± 20 m. We
identified the bed echo along 91 % of the entire survey
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Fig. 2. Radar data.(a) Ice and bed topography along the cen-
tral flowline. The red circles are the locations of the cross pro-
files. (b) Bed topography (ordinate) and ice thickness (colour)
measured across the flow. The red dotted lines show the isodepth
of 600 m b.s.l., the approximate elevation of the flat basin mea-
sured along the centre flowline(a) and the reference for each pro-
file.Transverse profiles are numbered from I to VII on both panels.
The yellow and blue line illustrates our understanding of the down-
stream and upstream region.

(Fig. 2). Most sections lacking a bed echo are shorter than
∼ 10 km (the maximum data gap is 20 km). Adjacent regions
to these data gaps slope down steeply toward the data gaps.
Therefore, the data gaps probably correspond to a deep bed
and thick ice, causing an increased radar signal attenuation,
and hence loss of signal.

Ice thickness was derived using a constant radio wave
propagation speed of 168 mµs−1. Surface elevation was ob-
tained by laser altimetry from the aircraft, and bed elevation
was subsequently derived by subtracting the ice thickness
from the surface elevation. We applied the geoid height of
20 m above the EGM96 ellipsoid (Rapp, 1997) to derive the
surface and bed elevations relative to sea level.

3 Mapping the subglacial topography

Compared to older data sets of Antarctic bedrock topography
(e.g. BEDMAP;Lythe et al., 2001), our new radar survey re-
veals a significantly different picture1. The survey highlights
a marked contrast in bed topography (Fig.2). Between the
Sør Rondane and Belgica Mountains, ice flows in a deeply in-
cised valley,∼ 20 km wide, lying∼ 1000 m below sea level
at the two uppermost transverse profiles (Fig.2b). The bed
topography is rather variable here, fluctuating between 1200
and 800 m b.s.l. Further downstream, bedrock elevation in-
creases rapidly (more than 500 m within 10 km distance) up
to a flat subglacial lowland lying around 600 m b.s.l. This can
be observed on both the longitudinal (Fig.2a) and cross pro-
files (Fig.2b). The elevation of this lowland varies less than
50 m locally, so the lowland is much flatter than the landward
valley between Sør Rondane and Belgica Mountains. The
amplitude of the local elevation variations increases sharply
between cross profiles 4 and 5 as we reach the piedmont of
the Sør Rondane Mountains. This is also the zone where we
find the onset of the subglacial valley, described earlier.

4 Spectral analysis of bed topography

4.1 Bed roughness index

One way to quantitatively characterize the above-described
bed conditions is to calculate bed roughness. The bed rough-
ness index RI is obtained by applying a fast Fourier trans-
form (FFT) to the bed elevation within a moving window
(Taylor et al., 2004):

RI =

fmax∫
fmin

|X[f ]|
2

NT1x
df , (1)

wherefmin = 1/(NT 1x), fmax = 1/(21x), NT = 2n is the
number of data points in the window,1x is the sampling
interval (100 m in our case) and where

X[f ] =

NT∑
d=1

x(d)e
2πi
NT

(d−1)(f −1)
. (2)

Equation (2) is the definition of the FFT for a datasetx(d)

with indexd in the range 1≤ d ≤ NT, andX[f ] is the same
data set in the frequency domain with indexf in the range
fmin ≤ f ≤ fmax. In other words, the bed roughness index RI
is the integral of the resultant power spectrum within each of
the moving windows.

We first resample the radar-derived bed topography
(80± 20 m intervals) with a fixed (100 m) interval. We then
detrend the measured bed elevation in each moving window,

1The data collected for this paper are incorporated in the recently
published BEDMAP2 data set (Fretwell et al., 2013).
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which is required to be able to perform an FFT. The method is
applied within a 2n data point window. Several authors rec-
ommendn ≥ 5 (Taylor et al., 2004; Bingham and Siegert,
2009; Rippin et al., 2011). By usingn = 6 we are able to
analyse roughness over wavelengths ranging from 200 up to
6400 m.

4.2 Results

The longitudinal bed profile (Fig.2) reveals two distinct ar-
eas: a flat area (between the grounding line and 65 km up-
stream) and an intersected subglacial relief typical of sub-
glacial mountain ranges. The transition between them oc-
curs within 10 km. The bed roughness index RI is capable
of quantifying this difference (Figs.3 and 4a). While the
two regions are still quite distinct, the transition of roughness
from one to the other is more gradual than expected from vi-
sual interpretation. For the downstream cross profiles (I–III),
the bed roughness is approximately constant, pointing to a
wide and relatively smooth lowland. Following the analysis
of Bingham and Siegert(2009), the flat and smooth area in
the downstream section of the West Ragnhild Glacier may
therefore very well be overlain by marine sediment. Accord-
ing to the further upstream profiles (IV–V), the bed is rougher
away from the current glacier flowline (longitudinal radar
profile). The low roughness area is therefore restricted to the
zones of fast ice flow. Once outside this section, bed rough-
ness indices increase, pointing to a rougher surface (VI–VII).

5 Analysis of bed-returned power

5.1 Analytical setup

To further examine the spatial distribution of basal condi-
tions, we analyse the radar power returned from the bed,
hereafter called BRP. The geometrically corrected BRP,
BRPc, can be seen as a proxy for bed reflectivity if englacial
effects do not vary along the radar profile (Matsuoka, 2011).
The BRPc is affected by both englacial attenuationL and bed
reflectivity R. In the decibel scale,[x]dB = 10log10(x), this
relationship can be written as

[BRPc
]dB = [BRP]dB + 10log10

(
h +

H

n

)2

,

' [R]dB − [L]dB . (3)

The geometrically corrected bed-returned power BRPc can
be calculated based on the measured BRP returned from the
bed and a geometric factor defined by(h+H/n)2. Here,h is
the height of the aircraft above the glacier surface,H is the
ice thickness (distance between the surface and the bed of
the ice mass), andn is the refraction index of the ice (∼ 1.8;
Matsuoka et al., 2012). The BRPc is then normalized to the
mean of the observed values.
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Fig. 3.Bed roughness analysis. Bed roughness index of the basal to-
pography (colour) calculated for wavelengths ranging from 200 to
6400 m. The grounding line is the same as in Fig.1b. Short legs of
absent bed echoes result in long gaps in the estimated bed roughness
indices due the window-based calculation of the bed roughness in-
dex. Larger RI corresponds to rougher bed. Contour lines represent
surface speed (m a−1).

One has to note that effects of temporal changes in the
instrumental characteristics and of ice crystal alignments
are ignored in Eq. (3). Englacial attenuation has contribu-
tions from pure ice and chemical constituents included in the
glacier ice, both of which depend exponentially on ice tem-
perature.

We estimate attenuationL using Eqs. (4)–(6) listed below
(Matsuoka et al., 2012). The depth-averaged attenuation rate
〈N〉 is derived from the depth profile of the attenuation rate
N(z), i.e.,

[L]dB =

H∫
0

N(z)dz . (4)

The attenuation profileN(z) is proportional to local ice con-
ductivity σ :

N(z) =
1000(10log10e)

cε0
√

ε
σ (z) ≈ 0.914σ(z), (5)

wherec is the wave velocity in vacuum,ε0 is the permittiv-
ity of free space andε is the relative permittivity of the ice.
Since we focus only on the contribution of pure ice to the at-
tenuation, conductivity depends only on temperature through

The Cryosphere, 8, 867–875, 2014 www.the-cryosphere.net/8/867/2014/
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Fig. 4. Subglacial conditions along the central flowline.(a) Bed
roughness index RI;(b) geometrically corrected bed-returned
power BRPc; (c) englacial attenuationL; (d) bed reflectivityR.

an Arrhenius-type relationship.

σ = σ0exp

[
−

E0

k

(
1

T (z)
−

1

Tr

)]
, (6)

whereσ0 = 15.4 µSm−1 is the pure-ice conductivity at the
reference temperatureTr = 251 K, T (z) is the vertical pro-
file of temperature,E0 = 0.33 eV is the activation energy and
k = 8.617× 10−5 eVK−1 is the Boltzmann constant (Mat-
suoka et al., 2012).

Englacial temperaturesT (z) for the attenuation model
(Eq. 6) are calculated using a two-dimensional thermome-
chanical higher-order model (Pattyn, 2002, 2003). Details
of this approach are given inMatsuoka et al.(2012). We
use a geothermal heat flux of 42 mWm−2 as lower bound-
ary condition. However, as shown inMatsuoka et al.(2012),
the exact choice of geothermal heat flux will not affect the
modelled englacial attenuation since the bed in the surveyed
domain is predicted to be at the pressure melting point ev-
erywhere even with a flux as low as 42 mWm−2. Once
the bed reaches pressure melting point, additional geother-
mal and shear heating have virtually no impact on ice tem-
perature, hence on englacial attenuation (Matsuoka, 2011).
Therefore, the estimated along-flow patterns of the attenua-
tion and bed reflectivity are robust regardless of the uncer-
tainties in geothermal heat flux. Figure4c shows[L] along
the longitudinal profile.

Although the chemical contribution to attenuation can
nearly equal the pure-ice contribution near the coast (Mat-
suoka et al., 2012), the lack of observation forces us to ig-
nore its contribution and to use only the pure-ice contribu-
tion to estimate englacial attenuation. Furthermore,MacGre-
gor et al.(2007) andMatsuoka et al.(2012) showed that the
relative importance of impurities contribution decreases as
temperature increases. The modelling reveals a mean attenu-
ation rate from pure ice between 20.2 and 23.1 dBkm−1. For
this range of value,Matsuoka et al.(2012) determine that
chemical contribution is less than the fifth of the pure ice
contribution.

5.2 Results

In the upstream valley, BRPc remains relatively low
(−20 dB) and varies little (several dB) except at two sites
where BRPc shows anomalous features (90 km and 170 km
upstream from the grounding line; Fig.4b). Further down-
stream, BRPc increases by∼ 50 dB within 20 km, over which
the ice thins only by∼ 200 m (Fig.2).

To clarify contributions of the bed reflectivity on BRPc,
we estimate the englacial attenuation using the predicted
temperature (Fig.4c). Attenuation decreases∼ 20 dB within
10 km at 65 km upstream from the grounding line due to a
decrease in ice thickness. Further downstream, attenuation
gradually decreases by 20 dB over 50 km, which is probably
more related to the changes in ice thickness than to changes
in depth-averaged attenuation rate〈N〉. To retrieve the ac-
tual bed reflectivity, we estimated bed reflectivity from BRPc

and englacial attenuation using Eq. (3). The corresponding
estimated bed reflectivity rapidly increases, approaching the
grounding line at 40–50 km, from where it varies little within
the last∼ 30 km (Fig.4d). The high bed reflectivity in the
zone immediately upstream of the grounding line may even-
tually point to wet bed conditions. This high bed reflectivity
is not directly related to the smoother bed interface because
RI is calculated for the wavelengths longer than 200 m but the
reflectivity is affected by the bed smoothness in the scale of
several wavelengths of the radio wave (5 m for this study). In
the next section, we will investigate whether wet basal con-
ditions are likely or not.

6 Ice flow modelling

6.1 Model setup

Velocity data show that West Ragnhild Glacier accelerates
steadily towards the grounding line (Fig.5). In this sec-
tion,using an ice flow model, we will infer the required
spatial distribution of basal friction (or, inversely, slipperi-
ness) to match modelled ice flow velocities to the satellite-
observed ones. The most common method is an inversion
method in which a friction parameter is spatially optimized in

www.the-cryosphere.net/8/867/2014/ The Cryosphere, 8, 867–875, 2014
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Fig. 5. (A) Observed surface flow speed (dashed black line) and
optimized surface flow speed profiles along the central flowline of
West Ragnhild Glacier;(B) Basal ice flow speed according to the
optimization and compared to the satellite-observed surface flow
speed (as in panelA); (C) Basal frictionβ2 along the flowline.

order to minimize the misfit between modelled and observed
velocities (MacAyeal, 1992, 1993; Arthern et al., 2010).

As a forward model we apply a simple ice flow model to
calculate the ice flow field along the central flowline of West-
ern Ragnhild Glacier, based on the shallow-ice approxima-
tion (SIA). In the vertically integrated case, the SIA surface
velocity (u(s)) is then given by

u(s) = u(b) +
2A

n + 1
H |τd|

n−1τd , (7)

whereτd = −ρgH ∂s
∂x

is the driving stress, andu(b) = β−2τd
is the basal velocity according to a viscous sliding law (Pat-
tyn et al., 2008). Other parameters in Eq. (7) areA andn = 3,
the vertically integrated temperature-dependent flow param-
eter and the exponent in Glen’s flow law, respectively;β is
the basal friction,ρ is the ice density,g is the gravitational
acceleration,H is the ice thickness, ands is the surface el-
evation. For a flowline stretching from the ice divide (Dome
Fuji) to the grounding line, boundary conditions for Eq. (7)
are a zero upstream velocity and a fixed surface velocity at

the edge of our profile ofu = 300 myr−1, according to ob-
servations.

Since an SIA model does not take into account longitu-
dinal stress gradients, spurious high-frequency variability in
the velocity field is to be expected when the surface of the ice
sheet is not supposed to relax to the imposed stress field. Es-
pecially small variations in surface slope may lead to a large
variability in velocity, due to its dependence on the power
of n. To prevent this, surface gradients are calculated over a
distance of several ice thicknesses (Kamb and Echelmeyer,
1986; Rabus and Echelmeyer, 1997).

The main unknown in Eq. (7) is the basal velocity field,
which is initialized with a high value of basal friction (β2

=

107), corresponding to conditions of ice frozen to the bed.
We then invoke an optimization procedure to determine the
spatial distribution ofβ2 so that the modelled surface veloc-
ity (um

s ) matches the observed one (uo
s). This is formulated as

a least-squares problem for which we seekβ2 that minimizes
the following objective function:

J (
ˆ

β2) =

no∑
i=1

‖uo
s(i) − um

s (
ˆ

β2, i)‖2 . (8)

The minimization problem is solved in a vector-valued ap-
proach. The vector containing the squared errors of the basal
velocity mismatch is provided to the algorithm that calculates
the flow field according to Eq. (7). The error vector is used
to compute a preconditioned conjugate gradient (computed
numerically using small variations inβ2 along the flow-
line). The subspace trust region method based on the interior-
reflective Newton method (trust-region-reflective algorithm)
described byColeman and Li(1994, 1996) then determines
the modifiedβ2-profile for the next iteration. The iterations

stop when the change inJ ( ˆβ2) is below an arbitrarily small
threshold.

We add two constraints toβ2. It has to be positive and, as
we expect the basal friction pattern to be continuous in space
(i.e. u(b) is continuously differentiable), the spatial pattern
is expressed in terms of summations of Legendre polynomi-
als. Such polynomials have the interesting property that they
form an orthogonal basis and lead to a better conditioning of
the nonlinear optimization problem, thus necessitating fewer
iterations to converge to the optimal solution. We use these
polynomials to describe the spatial distribution ofβ2 along
the flowline. We use polynomials up to degree 35. At this
stage, we reach convergence, which means that increasing
the polynomial degree does not reduce the error function any
further.

The surface and bed topography within the survey do-
main are taken from our data. Beyond this domain, bed and
surface topography are taken from both BEDMAP (Lythe
et al., 2001) and Bamber et al.(2009). The resulting pro-
file is similar to the one resampled directly from BEDMAP2
(Fretwell et al., 2013), since our ice thickness data have
been included. Short gaps within the retrieved bed echoes are

The Cryosphere, 8, 867–875, 2014 www.the-cryosphere.net/8/867/2014/
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linearly interpolated; the length of such gaps is typically less
than several ice thicknesses, so that the large-scale flow fields
are hardly affected by this choice. Longer gaps (> 10 km)
were interpolated in the same way. Bed topography uncer-
tainties associated with the longer data gaps introduces flow
speed uncertainties in the most upstream area and are suffi-
ciently far away from our region of interest.

6.2 Results

To correct for the unknown deformational velocity, we per-
formed the optimization procedure for different values of
the vertically integrated flow parameterA. Each of the val-
ues corresponds to mean ice temperatures of−2, −4, −5,
−10 and −15◦C (Cuffey and Paterson, 2010). Amongst
the five different flow parameters depicted in Fig.5, case
A corresponds to the warmest (softest) ice (−2◦C), and pre-
dicts higher ice flow speeds due to ice deformation along
the whole flowline compared to the observed ones. For this
value, the optimization procedure fails, as the model cannot
allow “negative” basal velocities. Not only is the ice too soft
(hence flows too fast), the pattern of the deformational veloc-
ity does not match the observed velocity profile.

Cases B to E reveal a good match of the modelled veloci-
ties with the observed ones. For each decrement in ice tem-
perature, the ice gets stiffer and the amount of basal sliding
along the profile becomes more important. Therefore, cases
D and E correspond to much colder (stiffer) ice (−10 and
−15◦C, respectively) and predict deformational velocities
that are too small, so that basal sliding takes up the major-
ity of the velocity along the profile.

The corresponding pattern ofβ2 is, with the exception of
case A, very similar for all simulations: it reveals a relatively
high friction inland and a low friction in the area 100 km up-
stream from the grounding line. Over the upstream section of
the longitudinal profile, ice motion is essentially governed by
internal deformation. All experiments show that basal motion
is dominant only in the downstream region.

7 Discussion and conclusions

Prior to our study, only two glaciers were considered as im-
portant contributors to the discharge of ice from DML, i.e.
Jutulstraumen and Shirase Glacier, and both have been the
subject of more interest in the past (e.g.Høydal, 1996; Pat-
tyn and Derauw, 2002). Despite their fast flow (the grounding
line velocity of Shirase Glacier is> 2000 myr−1), they each
discharge approximately 10 % of the total snow accumula-
tion of this part of the ice sheet (Rignot et al., 2008). Both
glaciers are topographically constrained and characterized by
a highly convergent flow regime. They also terminate in a rel-
atively narrow trunk. From an ice-dynamical viewpoint, Shi-
rase Glacier is a relatively stable feature, as its grounding line
cannot retreat over a distance larger than 5 to 10 km, since the

bedrock rapidly rises above sea level from the present posi-
tion of the grounding line (Pattyn, 1996, 2000; Pattyn and
Derauw, 2002). Such conditions make an outlet glacier less
prone to dynamic grounding line retreat and significant mass
loss due to dynamic changes in the ice shelf.

Taking into consideration West Ragnhild Glacier defi-
nitely changes the discharge picture in DML. Indeed, based
on the thickness data across the grounding line in conjunc-
tion with satellite-observed ice flow velocities, its discharge
(13–14 Gtyr−1) is comparable to the discharge of Jutulstrau-
men and Shirase Glacier. Nonetheless, the ice flow velocities
of West Ragnhild Glacier are relatively low. Ice flow speed
is > 100 myr−1 at 100 km upstream of the grounding line
and up to 250 myr−1 at the grounding line (Fig.1). The rea-
son for such low values is ice shelf buttressing by two major
ice rises within the Roi Baudouin Ice Shelf, slowing down
the flow upstream. While according toRignot et al.(2008),
the area seemed to be in balance, a significant imbalance is
currently observed in the grounding zone of West Ragnhild
Glacier and along the grounding line of the Roi Baudouin
Ice Shelf (Rignot et al., 2013), which is in line with direct
observations (Pattyn et al., 2012).

Despite present-day stable conditions, the analysis pre-
sented in this paper clearly demonstrates that West Ragn-
hild Glacier (i) is an important outlet glacier, (ii) is marine
terminating with a grounding line 600–700 m b.s.l., and (iii)
has a downstream section that is smooth, sediment covered
and water saturated in the downstream area. Beside data evi-
dence, inverse modelling allows the conclusion that decreas-
ing basal friction leads to an increasing basal velocity to-
wards the grounding line. Using two different kinds of evi-
dence, we demonstrate that the bed/ice interface plays a dom-
inant role in the acceleration of West Ragnhild Glacier to-
ward the grounding line.

Given the fact that the smooth bed is also flat and horizon-
tal and devoid of distinct lateral constraints, the grounding
line is potentially capable of advancing and retreating across
a substantial area. According to theoretical considerations
(Schoof, 2007), a grounding line retreat may be expected if
sudden changes occur at the seaward side. The close proxim-
ity of the DML ice shelves to the margin of the continental
shelf (Timmermann et al., 2010, and Fig.1a) could poten-
tially allow relatively warm water from the abyssal plains
to circulate under the shelf, leading to significant sub-shelf
melting (e.g.Smedsrud et al., 2006). Unpinning of the ice
shelf could therefore lead to grounding line retreat due to in-
creased flow speed, hence increased dynamic mass loss, in
line with recent observations (Rignot et al., 2013). New geo-
physical data presented in this paper highlight such a possi-
bility in West Ragnhild Glacier.
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