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Abstract. This regional study quantifies the CO2 exchange

at the air–water interface along the land–ocean aquatic con-

tinuum (LOAC) of the northeast North American coast, from

streams to the shelf break. Our analysis explicitly accounts

for spatial and seasonal variability in the CO2 fluxes. The

yearly integrated budget reveals the gradual change in the in-

tensity of the CO2 exchange at the air–water interface, from

a strong source towards the atmosphere in streams and rivers

(3.0± 0.5 TgC yr−1) and estuaries (0.8± 0.5 TgC yr−1) to a

net sink in continental shelf waters (−1.7± 0.3 TgC yr−1).

Significant differences in flux intensity and their seasonal re-

sponse to climate variations is observed between the North

and South sections of the study area, both in rivers and

coastal waters. Ice cover, snowmelt, and intensity of the car-

bon removal efficiency through the estuarine filter are iden-

tified as important control factors of the observed spatiotem-

poral variability in CO2 exchange along the LOAC.

1 Introduction

Over the past decade, several syntheses have highlighted the

significant contribution of the land–ocean aquatic contin-

uum (LOAC) to the global atmospheric CO2 budget (Cole et

al., 2007; Battin et al., 2009; Mackenzie et al., 2012; Bauer

et al., 2013; Ciais et al., 2013; Raymond et al., 2013; Regnier

et al., 2013a). In a recent review, Regnier et al. (2013a) pro-

posed that inland waters (streams, rivers and lakes) and estu-

aries outgas 1.1 and 0.25 PgC yr−1, respectively, while con-

tinental shelf seas take up 0.2 PgC yr−1. However, CO2 data

are too sparse and unevenly distributed to provide global cov-

erage and large uncertainties remain associated with these es-

timates. The inland water outgassing could for instance reach

2.1 PgC yr−1 with 86 % coming from streams and rivers

(Raymond et al., 2013), a value which is about twice that

reported in Regnier et al. (2013a) and in the IPCC Fifth

Assessment Report (Ciais et al., 2013). The most recent

global budgets for the estuarine CO2 source and the conti-

nental shelf CO2 sink also reveal significant discrepancies,

both falling within the 0.15–0.4 PgC yr−1 range (Laruelle et

al., 2010, 2013; Cai, 2011; Bauer et al., 2013; Dai et al.,

2013). None of these estimates, however, fully resolves the

seasonality in CO2 fluxes because temporal coverage of the

global data is insufficient. Complex seasonal dynamics of

CO2 exchanges between the atmosphere and individual com-

ponents of the LOAC have been reported in previous studies

which have highlighted the potential importance of the intra-

annual variability for local and regional CO2 budgets (e.g.,

Kempe, 1982; Frankignoulle et al., 1998; Jones and Mulhol-

land, 1998; Degrandpré et al., 2002; Thomas and Schneider,

1999; Wallin et al., 2011; Regnier et al., 2013a; Rawlins et

al., 2014). Here, we extend the analysis to the sub-continental

scale, and present the spatial and seasonal variability of CO2

fluxes at the air–water interface (FCO2) for the entire north-

east North American LOAC, from streams to the shelf break.

This region of unprecedented data coverage allows us to pro-
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duce, for the first time, empirically derived monthly maps

of CO2 exchange at 0.25◦ resolution. Our results allow us

to investigate the seasonal CO2 dynamics across the inter-

connected systems of the LOAC and elucidating their re-

sponse to contrasting intra-annual changes in climate con-

ditions.

2 Methods

Our study area is located along the Atlantic coast of the

northern US and southern Canada and extends from the

Albemarle Sound in the South section to the eastern tip

of Nova Scotia in the North section. It corresponds to

COSCAT 827 (for Coastal Segmentation and related CATch-

ments) in the global coastal segmentation defined for conti-

nental land masses by Meybeck et al. (2006) and extrapo-

lated to continental shelf waters by Laruelle et al. (2013).

COSCATs are homogenous geographical units that divide

the global coastline into homogeneous segments according to

lithological, morphological, climatic, and hydrological prop-

erties. The area corresponding to COSCAT 827 comprises

447× 103 km2 of watersheds and 357× 103 km2 of coastal

waters, amongst which 15× 103 km2 of estuaries. It is one

of the best monitored regions in the world with several regu-

larly surveyed rivers (Hudson, Susquehanna, York, Connecti-

cut) and some of the most extensively studied coastal wa-

ters (Degrandpré et al., 2002; Chavez et al., 2007; Fennel

et al., 2008; Fennel and Wilkin, 2009; Previdi et al., 2009;

Fennel, 2010; Shadwick et al., 2010, 2011; Signorini et al.,

2013). For the purpose of this study, the area was divided

into a North and a South section (Fig. 1). The boundary is

set on land to distinguish the regions subject to seasonal ice

freeze and snowfalls from those that are not (Armstrong and

Brodzik, 2001). This delineation attributes 96 % of the estu-

arine surface area to the South section due, for the most part,

to the contribution of Chesapeake Bay which accounts for

about two thirds of the estuarine area. The delineation ex-

tends further into the coastal waters in such a way that the

Scotian Shelf and the Gulf of Maine correspond to the North

section and the Mid-Atlantic Bight and Georges Bank to the

South section. The riverine data are calculated from pH and

alkalinity measurements extracted from the GLObal RIver

CHemistry Database (GLORICH (Hartmann et al., 2014),

previously used in Lauerwald et al., 2013), while continental

shelf values are calculated from the Surface Ocean CO2 Atlas

(SOCAT v2.0) database which contains quality controlled di-

rect pCO2 measurements (http://www.socat.info/, Bakker et

al., 2014).

2.1 Rivers

CO2 evasion from rivers (FCO2) was calculated monthly per

15 s grid cell (resolution of the hydrological routing scheme

HydroSHEDS 15 s, Lehner et al., 2008) from estimates of the

effective stream/river surface area Aeff [m2], gas exchange

velocity k [m d−1], and water–atmosphere CO2 concentra-

tion gradient 1[CO2] [µmol l−1]:

FCO2 = Aeff× k×1[CO2]. (1)

The calculation of Aeff first requires estimation of the total

stream/river surface area, A. The latter was calculated from

the linear stream network derived from the HydroSHEDS

15 s routing scheme using a minimum threshold on the catch-

ment area of 10 km2, and estimates of stream width derived

from the annual mean discharge Qann using the equations of

Raymond et al. (2012, 2013) (Eqs. 2, 3). Values of A were

not calculated for each individual month, as the discharge–

stream width relationship only hold true for Qann (Raymond

et al., 2013). Qann was obtained using HydroSHEDS 15 s

to route the gridded data of average annual runoff from the

UNH/GRDC composites (Fekete et al., 2002).

ln(B[m])= 2.56+ 0.423× ln(Qann[m
3 s−1
])

(Eq. 2 after Raymond et al., 2012),

ln(B[m])= 1.86+ 0.51× ln(Qann[m
3 s−1
]

(Eq. 3 after Raymond et al., 2013),

where B is stream width [m] and Qann is annual aver-

age discharge [m3 s−1].

For each 15 s raster cell covered by lake and reservoir ar-

eas as represented in the global lake and wetland database of

Lehner and Döll (2004), A was set to 0 km2. Aeff was then

derived from A to account for seasonal stream drying and ice

cover inhibiting FCO2. Seasonal stream drying was assumed

for each 15 s cell and month when the monthly average dis-

charge Qmonth is 0 m3 s−1. Values of Qmonth were calculated

similarly to that of Qann using the gridded data of average

monthly runoff from the UNH/GRDC composites (Fekete

et al., 2002). Ice cover was assumed for each 15 s cell and

month when the mean air temperature (Tair), derived from

the WorldClim data set of Hijmans et al. (2005), is below

−4.8◦ C (Lauerwald et al., 2015). In case of ice cover and/or

stream drying, Aeff is set to 0 m2. Otherwise Aeff equals A.

Values of k were first calculated as standardized values for

CO2 at a water temperature (Twater) of 20◦ C (k600), from

stream channel slope CS and estimates of flowing velocity

V (Eq. 4). Using the Strahler order (Strahler, 1952) to per-

form the segmentation of the stream network, CS was cal-

culated for each segment by dividing the change in its alti-

tude by its length. Information on altitude was derived from

the HydroSHEDS elevation model. V was calculated from

Qann based on the equations of Raymond et al. (2012, 2013)

(Eqs. 5, 6). Similarly to the stream width, the V −Q relation-

ship only holds true for Qann (Raymond et al., 2013), and this

is why only annually average values for V and k600 could be
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Figure 1. Geographic limits of the study area with the location of the riverine (GLORICH database, in green; Lauerwald et al., 2013) and

continental shelf waters data used for our calculations (SOCAT 2.0 database, in red; Bakker et al., 2014). The location of the estuarine studies

used is indicated by purple squares.

calculated. The k value for each month was calculated from

k600, an estimate of the average monthly water temperature

Twater (Lauerwald et al., 2015; Raymond et al., 2012).

k600[md−1
] = V [m s−1

]×CS[1]× 2841+ 2.02

(Eq. 4 after Raymond et al., 2012),

ln(V [ms−1
])=−1.64+ 0.285× ln(Qann[m

3 s−1
])

(Eq. 5 after Raymond et al., 2012),

ln(V [ms−1
])=−1.06+ 0.12× ln(Qann[m

3 s−1
])

(Eq. 6 after Raymond et al., 2013),

where k600 is the standardized gas exchange velocity for CO2

at 20◦ C water temperature [m d−1], Qann is annual average

discharge [m3 s−1], V stream flow velocity [m s−1], and CS

channel slope [dimensionless].

Values of 1(CO2) were derived from monitoring data

with calculated pCO2river (12 300 water samples, from

161 locations, Lauerwald et al., 2013), and an assumed

pCO2atmosphere of 390 µatm. Lauerwald et al. (2013) calcu-

lated pCO2river values from pH, alkalinity, water tempera-

ture, and, where available, major ion concentrations, using

the hydrochemical modeling software PhreeqC v2 (Parkhurst

and Appelo, 1999). The pCO2 values were converted into

concentrations, [CO2], using Henry’s constant (Henry, 1803)

for each sample at its observed temperature Twater using the

equation of Telmer and Veizer (1999). In order to minimize

the influence of extreme values, the results were aggregated

to median values per sampling location and month for which

at least three values were available. These median values per

sampling location and month were then used to calculate

maps of 1[CO2] at a 15 s resolution. To this end, an inverse

distance-weighted interpolation was applied. This method al-

lows us to predict a value for each grid cell from observed

values at the four closest sampling locations, using the in-

verse of the squared distance between the position on the

grid and each sampling locations as weighting factors. To

account for downstream decreases in pCO2river, which are

often reported in the literature (Finlay, 2003; Teodoru et al.,

2009; Butman and Raymond, 2011), the interpolation was

applied separately to three different classes of streams and

rivers defined by Qann, for which sufficiently large subsets

of sampling locations could be retained: (1) Qann< 10 m3 s−1

(n= 76), (2) 10 m3 s−1
≤Qann< 100 m3 s−1(n= 47), and (3)

Qann ≥ 100 m3 s−1 (n= 38). The three maps of 1[CO2] per

month were then recombined according to the spatial distri-

bution of Qann values. The FCO2 values were first calculated

using Eq. (1) at the high spatial resolution of 15 s for each

month. The results were then aggregated to a 0.25◦ resolu-

tion and 3-month period and reported as area-specific values

referring to the total surface area of the grid cell. At the outer

boundaries, only the proportions of the cell covered by our

study area are taken into account. The difference between the

www.biogeosciences.net/12/1447/2015/ Biogeosciences, 12, 1447–1458, 2015
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FCO2 values calculated using the equations of Raymond et

al. (2012) and Raymond et al. (2013) was used as an estimate

of the uncertainty of the mean yearly FCO2. The aforemen-

tioned method is consistent with the approach of Raymond

et al. (2013), which used two distinct sets of equations for

k and A to estimate the uncertainty in these parameters and

their combined effect on the estimated FCO2.

2.2 Estuaries

The yearly averaged CO2 exchange at the air–water inter-

face was obtained from local estimations of emission rates in

seven estuaries located within the study area (see Table 1).

The limited number of observations does not allow us to re-

solve the seasonality in CO2 emissions. The yearly average

local CO2 emission rates range from 1.1 molC m−2 yr−1 in

the Parker River to 9.6 molC m−2 yr−1 in the Hudson River

estuary, for a mean value of 4.2 molC m−2 yr−1 for the seven

systems. This value was then multiplied by the estuarine sur-

face areas extracted from the SRTM water body data set

(NASA/NGA, 2003), to estimate the bulk outgassing for the

North and South sections of COSCAT 827. It should be noted

that the methods used to estimate the CO2 emission rates dif-

fer from one study to the other (i.e., different relationships

relating wind speed to the gas transfer coefficient). How-

ever, in the absence of a consistent and substantial estuarine

pCO2 database for the region, we believe that our method

is the only one which allows one to derive a regional data

driven estimate for the CO2 outgassing from estuaries which

would otherwise require the use of reactive transport models

(Regnier et al., 2013b). Similar approaches have been used

in the past to produce global estuarine CO2 budgets (Borges

et al., 2005; Laruelle et al., 2010, 2013; Cai, 2011; Chen et

al., 2013). The standard deviation calculated for the emission

rates of all local studies was used as an estimate of the uncer-

tainty of the regional estuarine FCO2.

2.3 Continental shelf waters

Monthly CO2 exchange rates at the air–water interface were

calculated in continental shelf waters using 274 291 pCO2

measurements extracted from the SOCAT 2.0 database

(Bakker et al., 2014). For each measurement, an instanta-

neous local CO2 exchange rate with the atmosphere was cal-

culated using Wanninkhof’s equation (Wanninkhof, 1992),

which is a function of a transfer coefficient (k), dependent on

the square of the wind speed above sea surface, the apparent

solubility of CO2 in water (K ′0) [moles m−3 atm−1], which

depends on surface water temperature and salinity, and the

gradient of pCO2 at the air–water interface (1pCO2) [µatm].

FCO2 = As× k×K ′0×1pCO2 (2)

The parameterization used for k is that of Wanninkhof et

al. (2013), and all the data necessary for the calculations are

available in SOCAT 2.0 except for wind speed, which was

extracted from the CCMP database (Atlas et al., 2011). The

resulting CO2 exchange rates were then averaged per month

for each 0.25◦ cell in which data were available. Average

monthly CO2 exchange rates were calculated for the North

and South sections using the water surface area and weighted

rate for each cell, and those averages were then extrapolated

to the entire surface area As of the corresponding section to

produce FCO2. In effect, this corresponds to applying the av-

erage exchange rate of the section to the cells devoid of data.

To refine further the budget, a similar procedure was also ap-

plied to 5 depth segments (S1 to S5) corresponding to 0–

20, 20–50, 50–80, 80–120 and 120–150 m, respectively, and

their respective surfaces areas were extracted from high res-

olution bathymetric files (Laruelle et al., 2013). The choice

of slightly different methodologies for FCO2 calculations in

rivers and continental shelf waters stems from the better data

coverage in the continental shelf, which allows the capturing

of spatial heterogeneity within the region without using inter-

polation techniques. The standard deviation calculated for all

the grid cells of the integration domain was used as the un-

certainty of the yearly estimates of FCO2. A more detailed

description of the methodology applied to continental shelf

waters at the global scale is available in Laruelle et al. (2014).

3 Results and discussion

Figure 2 shows the spatial distribution of FCO2 along the

LOAC integrated per season. Throughout the year, river wa-

ters are a strong source of CO2 for the atmosphere. Sig-

nificant differences in the intensity of the CO2 exchange

at the air–water interface can nevertheless be observed be-

tween the North and South sections, both in time and space.

During winter, there is nearly no CO2 evasion from rivers

in the North section due to ice coverage and stream dry-

ing. Over the same period, the CO2 emissions from the

South section range from 0 to 5 gC m−2 season−1. During

spring, the pattern is reversed and rivers in the North exhibit

higher outgassing rates than in the South section with max-

imum emissions rates of > 10 gC m−2 season−1. This trend

is maintained throughout summer while during fall, the en-

tire COSCAT displays similar emission rates without a clear

latitudinal signal. Continental shelf waters display a very

different spatial and seasonal pattern than that of rivers.

During winter, the North section is predominantly a mild

CO2 sink, with rates between +2 and −5 gC m−2 season−1,

which intensifies significantly in the South section (−2 to

>−10 gC m−2 season−1). During spring, an opposite trend

is observed, with a quasi-neutral CO2 uptake in the South

section and a strong uptake in the North section, espe-

cially on the Scotian Shelf. The entire COSCAT becomes a

net CO2 source in summer with emission rates as high as

5 gC m−2 season−1 in the Mid-Atlantic Bight. During fall,

the Gulf of Maine and Georges Bank remain CO2 sources,

Biogeosciences, 12, 1447–1458, 2015 www.biogeosciences.net/12/1447/2015/
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Table 1. Summary of the data used for the FCO2 calculations in compartment of the LOAC.

Compartment Parameter Description Source Reference

Rivers pCO2 CO2 GLORICH Hartmann et al. (2014)

partial pressure Lauerwald et al. (2013)

− River network, digital HydroSHEDS 15 s Lehner et al. (2008)

elevation model (DEM)

− Runoff UNH/GRDC Fekete et al. (2002)

T Air temperature − Hijmans et al. (2005)

− Lake surface Global Lake and Lehner and Döll (2004)

area Wetland Database

Estuaries As Surface Area SRTM water body data set NASA/NGA (2003)

− CO2 exchange rate Average of Raymond et al. (1997)

local estimates Raymond et al. (2000)

Raymond and Hopkinson (2003)

Hunt et al. (2010)

Shelves As Surface area COSCAT/MARCATS Laruelle et al. (2013)

Segmentation

1pCO2 pCO2 gradient at the SOCAT database Bakker et al. (2014)

air–water interface

k Calculated using CCMP database Altas et al. (2011)

wind Speed

K ′
0

Solubility, calculated using SOCAT database Bakker et al. (2014)

salinity, water temperature

Figure 2. Spatial distribution of the CO2 exchange with the atmosphere in rivers and continental shelf waters aggregated by seasons. The

fluxes are net FCO2 rates averaged over the surface area of each 0.25◦ cell and a period of 3 months. Positive values correspond to fluxes

towards the atmosphere. Winter is defined as January, February, and March, Spring as April, May, and June, and so forth.

www.biogeosciences.net/12/1447/2015/ Biogeosciences, 12, 1447–1458, 2015
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while the Scotian Shelf and the Mid-Atlantic Bight become

again regions of net CO2 uptake.

The monthly integrated FCO2 for the North and South

sections provides further evidence of the contrasting sea-

sonal dynamics for the two areas (Fig. 3a and b). In the

North section, CO2 evasion from rivers is almost zero in

January and February, rises to a maximum value of 0.26±

0.05 TgC month−1 in May and then progressively decreases

until the end of the year. These low winter values are ex-

plained by the ice cover inhibiting the gas exchange with

the atmosphere. The steep increase and FCO2 maximum

in spring could be related to the flushing of water from

the thawing top soils, which are rich in dissolved organic

carbon (DOC) and CO2. Additionally, the temperature rise

also induces an increase in respiration rates within the water

columns(Jones and Mulholland, 1998; Striegl et al., 2012).

Rivers and the continental shelf in the North section present

synchronized opposite behaviors from winter through spring.

In the shelf, a mild carbon uptake takes place in January

and February (−0.04± 0.25 TgC month−1), followed by a

maximum uptake rate in April (−0.50±0.20 TgC month−1).

This CO2 uptake in spring has been attributed to photo-

synthesis associated with the seasonal phytoplankton bloom

(Shadwick et al., 2010). Continental shelf waters behave

quasi-neutral during summer (<0.05± 0.09 TgC month−1)

and emit CO2 at a high rate in November and December

(>0.15±0.21 TgC month−1). Overall, the rivers of the North

section emit 1.31±0.24 TgC yr−1, while the continental shelf

waters take up 0.47± 0.17 TgC yr−1. The very limited estu-

arine surface area (0.5 103 km2) only yields an annual out-

gassing of 0.03±0.02 TgC yr−1. The shelf sink calculated for

the region differs from that of Shadwick et al. (2011) which

reports a source for the Scotian Shelves, in contrast to the

current estimate. Our seasonally resolved budget is however

in line with the −0.6 TgC yr−1 sink calculated by Signorini

et al. (2013) using an 8-year data set as well as with the simu-

lations of Fennel and Wilkin (2009), which also predict sinks

of −0.7 and −0.6 TgC yr−1 for 2004 and 2005, respectively.

No similar analysis was so far performed for inland waters.

In the South section of the COSCAT, the warmer winter

temperature leads to the absence of ice cover (Armstrong

and Brodzik, 2001). Our calculations predict that the river-

ine surface area remains stable over time, favoring a rela-

tively constant outgassing between 0.1 and 0.2 TgC month−1

throughout the year, adding up to a yearly source of 1.69±

0.31 TgC yr−1. Estuaries emit 0.73±0.45 TgC yr−1, because

of their comparatively large surface area (14.5× 103 km2),

about 1 order of magnitude larger than that of rivers (1.2×

103 km2, Table 2). It should be noted that our estimate of

the estuarine outgassing is derived from a limited number

of local studies, none of which were performed in the two

largest systems of COSCAT827, which are the Chesapeake

and Delaware bays (> 80 % of the total estuarine surface

area in COSCAT 827). These estuaries are highly eutrophic

(Cai, 2011), which suggests that they might be character-

Figure 3. Areal-integrated monthly air–water CO2 flux for rivers

and the continental shelf waters in the North section (a), South sec-

tion (b), and entire study area (c). Positive values correspond to

fluxes towards the atmosphere. The boxes inside each panel cor-

respond to the annual carbon budgets for the region including the

lateral carbon fluxes at the river–estuary interface, as inorganic (IC)

and organic carbon (OC). The values in grey represent the uncer-

tainties of the annual fluxes.

ized by lower pCO2 values and subsequent CO2 exchange

than the other systems in the region. On the other hand, our

regional outgassing of 50 gC m−2 yr−1 is already well be-

low the global average of 218 gC m−2 yr−1 calculated using

the same approach by Laruelle et al. (2013) for tidal estu-

aries. The continental shelf CO2 sink is strongest in Jan-

uary (−0.47± 0.30 TgC month−1) and decreases until June,

when a period of moderate CO2 emission begins (max of

0.13±0.08 TgC month−1 in August) and lasts until October.

Finally, November and December are characterized by mild

CO2 sinks. Such seasonal signal, following that of water tem-

perature, is consistent with the hypothesis of a CO2 exchange

in the South section regulated by variations in gas solubility,

Biogeosciences, 12, 1447–1458, 2015 www.biogeosciences.net/12/1447/2015/
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Table 2. Surface areas, CO2 exchange rate with the atmosphere, and surface integrated FCO2 for the North and South sections of COSCAT

827, subdivided by river discharge classes and continental shelf water depth intervals.

North South Total

Surface Area Rate FCO2 Surface Area Rate FCO2 Surface Area Rate FCO2

103 km2 gCm−2 yr−1 109 gC yr−1 103 km2 gCm−2 yr−1 109 gC yr−1 103 km2 gCm−2 yr−1 109 gC yr−1

Rivers

Q1 (Q < 1 m s−1) 0.14 2893± 521 391± 70 0.27 1961± 353 532± 96 0.41 2271± 409 924± 166

Q2 (1 m s−1 <Q <10 m s−1 ) 0.21 2538± 457 525± 95 0.32 1570± 283 506± 91 0.53 1948± 351 1032± 186

Q3 (10 m s−1 <Q <100 m s−1 ) 0.16 1476± 267 237± 43 0.30 1307± 235 392± 71 0.46 1366± 246 629± 113

Q4 (100 m s−1 <Q) 0.17 891± 160 152± 27 0.36 729± 131 261± 47 0.52 781± 141 412± 74

Sub-total 0.67 1939± 349 1305± 235 1.25 1351± 243 1692± 305 1.92 1557± 280 2997± 539

Estuaries 0.53 50± 31 27± 19 14.51 50± 31 731± 453 15.04 50± 31 758± 469

Shelf

S1 (depth <20m) 11.21 5± 1 53± 19 24.28 −3± 1 −79± 11 35.49 −1± 1 −27± 5

S2 (20 m <depth < 50 m) 26.25 −1± 1 −35± 12 63.88 −8± 1 −521± 70 90.13 −6± 1 −556± 108

S3 (50 m <depth < 80 m) 39.28 −3± 1 −128± 45 48.63 −7± 1 −359± 126 87.91 −6± 1 −488± 95

S4 (80 m <depth < 120 m) 60.69 −3± 1 −209± 73 25.18 −8± 1 −199± 27 85.87 −5± 1 −409± 80

S5 (120 m <depth < 150 m) 34.73 −4± 1 −151± 18 7.63 −12± 1 −91± 12 42.36 −6± 1 −242± 47

Sub-total 172.17 −3± 1 −472± 166 169.59 −7± 1 −1250± 169 341.77 −5± 1 −1722± 335

as suggested by Degrandpré et al. (2002) for the Mid-Atlantic

Bight.

The analysis of the intensity of the river CO2 outgassing

reveals that the smallest streams (Q<1 m3 s−1, Q1 in Ta-

ble 2) display the highest emission rates per unit surface area,

with values ranging from 1961 gC m−2 yr−1 in the South sec-

tion to 2893 gC m−2 yr−1 in the North section. These val-

ues gradually decrease with increasing river discharge to

729 gC m−2 yr−1 in the South section and 891 gC m−2 yr−1

in the North section for Q> 100 m3 s−1 (Q4, Table 2). The

emission rates for this latter class of rivers are consistent with

the median emission rate of 720 gC m−2 yr−1 proposed by

Aufdenkampe et al. (2011) for temperate rivers with widths

larger than 60–100 m. Aufdenkampe et al. (2011) also report

a median emission rate of 2600 gC m−2 yr−1 for the smaller

streams and rivers, which falls on the high end of the range

calculated for Q1 in the present study. The surface area of

the river network is relatively evenly distributed amongst the

four discharge classes of rivers (Table 2). Yet, river sections

for which Q < 10 m3 s−1 (Q1+Q2) contribute to 65 % of the

total CO2 outgassing although they only represent 51 % of

the surface area. This result therefore highlights that streams

and small rivers are characterized by the highest surface-

area-specific emission rates. The higher outgassing rates in

the North section are a consequence of higher 1CO2 values

since average k values are similar in both sections. In rivers

with Qann<10 m3 s−1, the 1CO2 is about twice as high in the

North than in the South section from April to August (Ta-

ble 2). The calculation of pCO2 from alkalinity and pH pre-

sumes however that all alkalinity originates from bicarbon-

ate and carbonate ions and thus tends to overestimate pCO2

because non-carbonate contributions to alkalinity, in particu-

lar organic acids, are ignored in this approach. The rivers in

Maine and New Brunswick, which drain most of the north-

ern part of COSCAT 827, are characterized by relatively low

mineralized, low pH waters, rich in organic matter. In these

rivers, the overestimation in pCO2 calculated from the alka-

linity attributed to the carbonate system only was reported

to be in the range of 13–66 % (Hunt et al., 2011). Consid-

ering that rivers in the southern part of COSCAT 827 have

lower DOC concentrations and higher dissolved inorganic

carbon (DIC) concentrations, the higher FCO2 rates per sur-

face water area reported in the northern part could partly be

due to an overestimation of their pCO2 values. However, a

direct comparison of average pCO2 values does not con-

firm this hypothesis. For the two Maine rivers (Kennebec and

Androscoggin rivers), Hunt et al. (2014) report an average

pCO2 calculated from pH and DIC of 3064 µatm. In our data

set, three sampling stations are also located in these rivers

and present lower median pCO2 values of 2409, 901 and

1703 µatm for Kennebec River at Bingham and North Sid-

ney and for Androscoggin River at Brunswick, respectively.

A probable reason for the discrepancy could be that we re-

port median values per month while Hunt et al. (2014) report

arithmetic means, which are typically higher.

On the continental shelf, the shallowest depth interval is a

CO2 source in the North section while all other depth inter-

vals are CO2 sinks (Table 2). The magnitude of the air–sea

exchange for each segment is between the values calculated

for estuaries (50 gC m−2 yr−1) and the nearby open ocean

(∼20 gC m−2 yr−1, according to Takahashi et al., 2009). This

trend along a depth transect, suggesting a more pronounced

continental influence on nearshore waters and a strengthen-

ing of the CO2 shelf sink away from the coast was already

discussed in the regional analysis of Chavez et al. (2007)

and by Jiang et al. (2013), specifically for the South At-

lantic Bight. Modeling studies over a larger domain includ-

ing the upper slope of the continental shelf also suggest that

the coastal waters of the Northeast US are not a more in-

tense CO2 sink than the neighboring open ocean (Fennel

www.biogeosciences.net/12/1447/2015/ Biogeosciences, 12, 1447–1458, 2015
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and Wilkin, 2009; Fennel, 2010). Our analysis further sug-

gests that the continental influence is more pronounced in

the North section. Here, the shallowest waters (S1) are strong

net sources of CO2 while the intensity of the CO2 sink for the

other depth intervals gradually decreases, but only to a max-

imum value of −4 gC m−2 yr−1 for S5. This value is about 3

times smaller than in the South section (−12 gC m−2 yr−1).

Annually, river and estuarine waters of the entire COSCAT

827 outgas 3.0± 0.5 and 0.8± 0.5 TgC yr−1, respectively,

while continental shelf waters take up 1.7± 0.3 TgC yr−1

(Fig. 3c). The total riverine carbon load exported from rivers

to estuaries for the same area has been estimated to be

4.65 TgC yr−1, 45 % as dissolved and particulate organic car-

bon (2.10 TgC yr−1, Mayorga et al., 2010) and 55 % as dis-

solved inorganic carbon (2.55 TgC yr−1, Hartmann et al.,

2009). The ratio of organic to inorganic carbon in the river

loads is about 1 in the North section and 1.4 in the South

section. This difference stems mainly from a combination of

different lithogenic characteristics in both sections and the

comparatively higher occurrence of organic soils in the North

section (Hunt et al., 2013; Hossler and Bauer, 2013). Esti-

mates of the total amount of terrestrial carbon transferred to

the riverine network are not available, but the sum of the river

export and the outgassing, which ignores the contribution of

carbon burial and lateral exchange with wetlands, provides a

lower bound estimate of 7.65 TgC yr−1. Under this hypoth-

esis, ∼ 40 % of the terrestrial carbon exported to rivers is

emitted to the atmosphere before reaching estuaries. In spite

of higher emission rates per unit surface area in the North

section (Table 2), the overall efficiency of the riverine car-

bon filter is essentially the same in the two sections (40 and

38 % outgassing for the North and the South sections, respec-

tively). On the shelf, however, the South section exhibits a

significantly more intense CO2 sink (−1.25± 0.2 TgC yr−1)

than in the North section (−0.47±0.2 TgC yr−1). A possible

reason for this difference can be found in the contribution of

the estuarine carbon filter. In the South section, where 96 %

of the estuarine surface area is located, these systems con-

tribute to an outgassing of 0.73 TgC yr−1 while in the North

section, their influence is negligible. Cole and Caraco (2001)

estimated that 28 % of the DOC entering the relatively short

Hudson River estuary is respired in situ before reaching the

continental shelf and it is thus likely that the estuarine out-

gassing in the South section is fueled by the respiration of the

organic carbon loads from rivers. In contrast, the absence of

estuaries in the North section favors the direct export of ter-

restrial organic carbon onto continental shelf waters where it

can be buried and decomposed. The respiration of terrestrial

organic carbon could therefore explain why the strength of

the shelf CO2 sink is weaker in this portion of the domain.

Such filtering of a significant fraction of the terrestrial car-

bon inputs by estuaries has been evidenced in other systems

(Amann et al., 2010; 2015). This view is further substanti-

ated by the similar cumulated estuarine and continental shelf

FCO2 fluxes in both sections (Fig. 3a and b). Naturally, other

environmental and physical factors also influence the carbon

dynamics in shelf waters and contribute to the difference in

CO2 uptake intensity between both sections. For instance,

in the North section, the Gulf of Maine is a semi-enclosed

basin characterized by specific hydrological features and cir-

culation patterns (Salisbury et al., 2008; Wang et al., 2013)

which could result in longer water residence times promot-

ing the degradation of shelf-derived organic carbon. Other

potential factors include the plume of the Saint Lawrence

Estuary, which has also been shown to transiently expend

over the Scotian Shelf (Kang et al., 2013), the strong tem-

perature gradient, and the heterogeneous nutrient availability

along the region which may result in different phytoplankton

responses (Vandemark et al., 2011; Shadwick et al., 2011).

Additionally, modeling studies evidenced the potential influ-

ence of sediment denitrification on water pCO2 through the

removal of fixed nitrogen in the water column and conse-

quent inhibition of primary production (Fennel et al., 2008;

Fennel, 2010). This removal was estimated to be of similar

magnitude as the lateral nitrogen loads, except for estuaries

of the Mid-Atlantic Bight (MAB) region (Fennel, 2010). It

can nonetheless be suggested that the estuarine carbon filter

in the South section of COSCAT 827 is an important control

factor of the CO2 sink in the Mid-Atlantic Bight, which is

stronger than in any other area along the entire Atlantic coast

of the US (Signorini et al., 2013).

4 Conclusions

Our data-driven spatially and seasonally resolved budget

analysis captures the main characteristics of the air–water

CO2 exchange along the LOAC of COSCAT 827. It evi-

dences the contrasting dynamics of the North and South sec-

tions of the study area and an overall gradual shift from

a strong source in small streams oversaturated in CO2 to-

wards a net sink in continental shelf waters. Our study re-

veals that ice and snow cover are important controlling fac-

tors of the seasonal dynamics of CO2 outgassing in streams

and rivers and account for a large part of the difference be-

tween the North and South sections. The close simultaneity

of the snowmelt on land and of the phytoplankton bloom on

the continental shelf leads to opposite temporal dynamics in

FCO2 in these two compartments of the LOAC. In addition,

our results reveal that estuaries filter significant amounts of

terrestrial carbon inputs, thereby influencing the continental

shelf carbon uptake. Although this process likely operates in

conjunction with other regional physical processes, it is pro-

posed that the much stronger estuarine carbon filter in the

South section contributes to a strengthening of the CO2 sink

in the adjacent continental shelf waters.
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