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ABSTRACT: This paper will evaluate different automated operational modal analysis techniques for the continuous monitoring
of offshore wind turbines. The experimental data has been obtained during a long-term monitoring campaign on an offshore
wind turbine in the Belgian North Sea. State-of-the art operational modal analysis techniques and the use of appropriate
vibration measurement equipment can provide accurate estimates of natural frequencies, damping ratios and mode shapes of
offshore wind turbines. To allow a proper continuous monitoring the methods have been automated and their reliability
improved. The advanced modal analysis tools, which will be used, include the poly-reference Least Squares Complex
Frequency-domain estimator (pLSCF), commercially known as PolyMAX, the polyreference maximum likelihood estimator
(pMLE), and the frequency-domain subspace identification (FSSI) technique. The robustness of these estimators with respect to
a possible change in the implementation options that could be defined by the user (e.g. type of polynomial coefficients used,

parameter constraint used....) will be investigated.

In order to improve the automation of the techniques, an alternative

representation for the stabilization charts as well as robust cluster algorithms will be presented.
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1 INTRODUCTION

In [5-7], an approach for automatic identification of the
different dynamic parameters based on the measurement of
the dynamic response of wind turbines during operating
conditions has been introduced and validated by performing a
long-term monitoring campaign on an offshore wind turbine.
The preliminarily results obtained from this long-term
validation showed that the proposed approach is sufficiently
robust to run online basis where it does not need a user
interaction, providing almost real-time parameters that
characterize the wind turbine’s condition. Since this approach
mainly depends on the continuous tracking of the modal
parameters of the supporting structures as a tool for the
subsequent damage detection, the used modal parameter
estimators within this approach plays an important role in the
success of the monitoring process. Thus, having an accurate
and robust modal parameters estimator in the framework of
this monitoring approach is a must. The monitoring results
shown in [5, 6] have been obtained by performing the
monitoring on data collected during a period of 2 weeks
where the OWT was in parked condition. In [5], the modal
parameters estimation tools , which have been used, included
the polyreference Least Squares Complex Frequency-domain
(pLSCF) estimator-commercially known as PolyMAX
estimator- and the covariance driven Stochastic Subspace
identification method (SSI-COV). In [6], only the pLSCF is
used as the modal parameters estimation tool for the
monitoring process.

In this paper and in the framework of the automatic
monitoring approach presented in [5-7], the state-of-the-art
modal parameters estimators will be implemented and applied

to a long-term monitoring campaign of an offshore wind
turbine. The monitoring considered in this paper has been
performed on a subset (i.e. 100 datasets with 10 minutes for
each) of data collected during a period of 2 weeks where the
OWT was in parked condition [5, 6]. The state-of-the-art
modal parameters estimators that will be considered in this
paper include the polyreference Maximum Likelihood
Estimator (pMLE)[S8, 9], the PolyMAX estimator [10, 11],
Frequency-domain subspace identification (FSSI) [12]. The
applicability of these estimators to identify the modal
parameters of the fundamental vibration modes of the
supporting structures of the OWT under test over a long-term
measurement will be compared and discussed.

2 OFFSHORE MEASUREMENTS

The presented measurement campaign is performed at the
Belwind wind farm, which consists of 55 Vestas V90 3MW
wind turbines. This wind farm is located in the North Sea on
the Bligh Bank, 46 Km off the Belgian coast. The structures
instrumented in this campaign are the tower and the transition
piece. The measurements are taken at four levels on 9
locations using 10 sensors. The measurement locations are
indicated in Figure 1by the red arrows. The chosen sensors
levels are at height of 67m, 37m, 23m, 15m above the sea
level, respectively 1 to 4. There are two accelerometers
mounted at the lower three levels and four at the top level.
Figure 1 shows an example of the accelerations measured in
the for-aft direction (direction aligned with the nacelle) during
10 minutes of ambient excitation.
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Figure 1: Measurement locations and data acquisition system
(left), Example measured accelerations during ambient
excitation on 4 levels, with level 1 the highest level, in the
fore-aft direction (right-top) movement seen from above
(right-bottom)

In order to classify the operating conditions of the wind
turbine during the measurements SCADA data (power, rotor
speed, pitch angle, nacelle direction) is being collected at 10-
minute intervals. In Figure 2, the SCADA data is shown for
the selected 100 datasets that will be used in this paper. Most
of the times the wind-turbine was idling with a speed lower
than 1 rpm and sometimes the wind turbine was in parked
conditions. Both conditions allow us to sufficiently comply
with the time-invariant OMA assumptions and avoid the
presence of harmonic components in the frequency range of
interest.
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Figure 2: SCADA data for monitoring period from top to
bottom: rpm, pitch-angle (deg), Yaw-angle (deg), and wind
speed (m/s)

3 FULLY AUTOMATED MONITORING

To allow an accurate continuous monitoring of the dynamic
properties a fast and reliable solution that is applicable on
industrial scale has been developed. The different steps of the
fully automated dynamic monitoring used in this paper are
discussd in [5-7]. The following steps are followed:

Step 1: Pre-processing vibration data

1. Creation of a database with the original vibration data
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collected at 10 minute intervals and sampled at high
frequency, together with the ambient data and the
SCADA data with corresponding time stamps.

2. Pre-processing the vibration-data to eliminate the
offset, reduce the sampling frequency, transform
them in the nacelle coordinate system.

3. Calculate the power
acceleration responses
approach [7,8].

spectra of the measured
using the correlogram

Step 2: Automated operational modal analysis

1. Applying a modal parameter estimator to the calculated
power spectra to extract the modal parameters in an
automated way based on a clustering algorithm

2. Calculate statistical parameters (e.g. mean values,
standard deviation) of the identified parameters

Step 3: Tracking frequencies, damping values and mode
shapes

1. Creation of a database with processed results

The second step (modal parameter estimation step) in this
monitoring approach is very crucial step since it will
determine the success of the monitoring process. In order to
achieve this step with high confidence, several modal
parameters estimators have to be tested and compared to each
other in terms of the quality of the estimated parameters. In
the presented paper, the applicability of three different
frequency-domain modal parameters estimators to achieve the
second step in the monitoring approach will be tested. These
estimators include the polyreference Maximum Likelihood
Estimator (pMLE)[S8, 9], the PolyMAX estimator [10, 11],
Frequency-domain subspace identification (FSSI) technique
[17].

Figure 3 shows the five dominant vibration modes in the
frequency band of interest that are being tracekd in step 3.
These five dominant modes are first Fore-aft bending mode
(FA1), first side-side bending mode (SS1), mode with a
second Fore-aft bending (FA2) that is coupled mode between
the tower and the blades, mode with a second side-side
bending mode tower and nacelle component (SS2N), mode
with a second Fore-aft bending mode tower and nacelle
component (FA2N).
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Figure 3: Five dominant mode shapes: from left to right: FA1,
SS1, FA2, SS2N, and FA2N
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4  CONTINUOUS MONITORING RESULTS

In this section, each modal parameter estimator will be
implemented in the second step of the fully automated
dynamic monitoring approach shown in Figure 3 and the
obtained monitoring results will be discussed. For all the
estimators, the maximum number of modes to be identified is
set to 32 and for the pMLE, which is an iterative
algorithm;vthe number of iterations is set to 20. For the
tracking of the five fundamental modes estimated from the
different consecutive 10 minutes data sets, the needed MAC
criterion between the estimated modes and the reference
modes is set to 70% and the allowed frequency difference
between the estimates modes and the reference modes value is
set to 3%. All the estimators are applied to the analyzed data
using different number of modes starting from the maximum
settled value (i.e. 32) until two with a step 1. Then, all the
estimated modal parameters (i.e. frequencies, damping ratios,
and mode shapes) for each mode at each defined number of
modes are fed to the hierarchical clustering algorithm to
cluster the parameters that correspond to the same physical
mode (see Figure 4).

Stabilization Chart

Model order
damping (%)
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Figure 4: Left: stabilization chart constructed by
PolyMAX estimator showing the estimated modes at different
model order Right: the clustering results obtained by feeding
all the estimated modal parameters ate different model orders

to the hierarchical clustering algorithm

In Figure 5 and for each estimator, the evolutions of the
natural frequencies and the damping ratios of the identified
modes within the analyzed frequency band during the
monitoring of 100 consecutive 10 minutes data sets is
presented. Figure 6 illustrates the different mode shapes
identified in the 100 successive data sets, where it can be seen
that the mode shapes from all the estimators are very coherent
over the different data sets.

In terms of the damping estimates, it can be seen from
Figure 6 that all the estimators show again a similar
performance. The damping estimates for the highest 3 modes
are reasonably coherent, while the ones associated with the
lowest 2 modes present a high scatter. A part of this scatter is
attributed to the high dependence of the damping of these
modes on the ambient parameters, e.g. wind speed. The
damping values of those modes are highly dependent on the
aerodynamic damping that resulted from the wind-nacelle
interaction and it can be seen from the illustrated mode shapes
that those modes are accompanied with high movement at the
nacelle position compared with the other modes. This is also

explain why those modes have higher damping values
compared to the other modes. In addition, this scatter on the
damping estimate of the lowest 2 modes can be explained by
the fact that the estimation of the very close spaced modes
usually faces some difficulties, which increases the
uncertainty on their estimates, especially on the damping
values.
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Figure 5: Evolution of frequencies and damping ratios of
the 5 dominant modes during the monitoring period using
different modal parameters estimators. Top: pMLE, Middle:
PolyMAX, Bottom: FSSI

2241



Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014

80— 80— 80— 80 80— technique and hence slow, it is found that it needs around 5
N - LA 60|\ . . . .
= ig £ ig w £ ig a ig E 4 minutes to achieve the estimation process for one data set (10
£ ool V] = sl 1] £ ool 12 ol ll1E 2/ 1) minutes data set) and hence it is slow. This is the only
[=)] [e2] [e2] [2] - T = . . .
‘© ‘D o) ‘© [}
2 ] ? 2 / 2 o2 o drawback we can mention about this estimator based on the
2ol | 20 w0l | 20 -20 presented results.
20 2 20 2 20 2 20 2 20 2
Table 1: Results of the continuous monitoring using the
80— 80— 80 pMLE with different implementation variants
- e O-N12 & = (from top to bottom: Complex coefficients + logarithmic
= £ | 3 AN E 4|l WNIlE . . . .
= = 40 = 40 = = equation error, Complex coefficients + linear equation error,
S S 20 5 20 5 20 > 1 ffici 1 ithmi . 1
2 g e I L, Ko Real coefficients + logarithmic equation error, and Rea
* 22 20 20 coefficients + linear equation error.
20 2 202 202
mode Median freq Hz Freq. std Median damp % | Damp. std | Success rate (%
1 0.36603 0.003444 1.69866 0.68061 59
80 T 80 - 80 - 80 2 0.36316 0.005106 2.39327 1.01793 64
| I I 3 1.20566 0.005913 0.58861 0.24867 100
Py 60 - —_ 60 - ‘\‘ T - 60 - — 60 P 4 1.45666 0.015996 1.10231 0.47696 100
E 40l W 1E 40l W | E 40 I\, E a0 £ 5 157413 0.017227 0.92266 0.57113 99
£ £ £ £ £
-uE'; 20 % 20 % 20 % 20 ?,’ mode Median freq Hz Freq. std Median damp % Damp. std Success rate (%)
T 9 T oL T o4/ T o0 T 1 0.36497 0.00429 1.70854 0.95741 64
R 2 0.36375 0.00537 221068 1.01024 59
-20 | -20 -20 { -20 3 1.20600 0.00618 0.66701 0.23009 100
2 0 2 2 0 2 2 0 2 2 0 2 4 1.45718 0.01683 1.11793 0.47897 100
5 1.57684 0.01640 1.00898 0.57642 100
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Figure 6: Evolution of the mode shapes of the 5 dominant 1 0.3653 0.0039 1.7587 0.7456 58
: : : : : 2 0.3636 0.0051 2.3343 1.0163 64
modes during the monitoring of 100 consecutive 10 minutes 3 12059 0.0063 0.5770 0.2395 100
data sets: 1st row (pMLE), 2nd row (PolyMAX), 3rd row : 145691 o.01e4 10904 D.4082 %
(FSSI). FA-direction (red lines), SS-direction (green lines). At
. d Median freq H. Freq. std Median d % D . std Si te (%
each row from left to right: FA1, SS1, FA2, SS2N, and FA2N. e o abase T o054 S amp. i | Sucooss mle ()
2 0.36414 0.0058 2.5271 1.1024 62
3 1.20513 0.0070 0.6507 0.2602 97
4 1.45758 0.0158 1.0922 0.5165 98
4.1 The pMLE results 5 1.57668 0.0166 1.0056 05949 98
Table 1 presents the results of the continuous monitoring
4.2 The pLSCF (PolyMAX) results

routines in the analysis of the 100 data sets using the pMLE.
In the last column, the success rate of the identification of the
5 dominant modes is quantified. Also presented in this table
are the median of the frequency and damping estimates
together with their standard deviation. The median and the
standard deviation of each mode (frequency and damping) are
calculated for the different estimates for that mode over the
analyzed 100 datasets. The pMLE is tried four times where
the implementation variants have been changed at each time
to check the robustness of the estimator with this variation in
the implementation options. Different type of polynomial
coefficients (real/complex-valued coefficients) and different
equation error (linear/ logarithmic equation error presented by
equations (2) and (5)) have been tried and the results for each
case are presented in Table 1. The results presented in this
table show that whatever the implementation options are the
PMLE converges to almost the same values and this is for the
frequency and damping estimates. The differences between
the logarithmic and linear equation error are not remarkable
since the analyzed data is not so noisy.

However, it can be seen that the logarithmic implementation
gives a bit lower variability (i.e. std) on the estimated
parameters over the different analyzed data sets for the 1
mode, especially for the damping estimate. This consistency
of the pMLE results is expected since the expected value of
the cost function of the pMLE is scale-invariant and hence
should converge to the same estimates regardless of the nature
of the used coefficients. Since the pMLE is an iterative
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The pLSCF (PolyMAX) estimator is a linear least-squares
technique and hence inconsistent (i.e. the expected value of its
cost function is dependent on the parameters used). It means
that if the parameter constraint used to solve for the numerator
and the denominator coefficients changed, the obtained
estimates will be also changed. Indeed, the extent of the
differences in the final results depends on the level of the
noise on the analyzed data [26, 27]. In Table 2 and 3, the
results of the continuous monitoring of the pLSCF estimator
are shown in terms of the median, std, and success rate of the
frequency and damping estimates of the 5 dominant modes
within the frequency-band of interest. Please note that the
shown median and std values for each mode are calculated
over the different 100 estimates of each parameter (i.e.
frequency and damping) obtained from applying the pLSCF
estimator on the consecutive 100 data sets.

Table 2 shows the results when real-valued coefficients are
used with three different parameter constraint cases used to
solve for the numerator and denominator coefficients, while
Table 3 shows the results when complex-valued coefficients
are used with again three different parameter constraints used.
The three different parameter constraints that have been tried
are the maximum order coefficient, the lowest order
coefficients, and the norm-1 constraint. Before we go to the
discussion of the obtained results, the computational time
taken by the pLSCF estimator to process one 10 minutes data
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set is about 1.8 s. It can be seen that the pLSCF is very fast
compared to the pMLE and this normal since it is one-step
approach.

The results presented in Table 2 and 3 show that the change in
the frequency parameter values is very small when either the
type of the coefficient or the parameter constraint is changed.
The damping estimate, especially for the 2 lowest modes,
seems to be influenced by the type of coefficients used in
particular when the maximum order coefficient constraint is
used. For both the real and complex coefficient cases, it can
be noted that the parameter constraint used has an effect on
the damping estimate values. However, it can be seen that the
complex-valued coefficients are less sensitive to the parameter
constraint changing compared to the real-valued coefficients.
In addition, the complex-valued coefficients give lower
variability (i.e. std) on the damping estimates in particular for
the lowest 2 modes, which can be explained by the fact that
complex-valued coefficients lead to better conditioning
problem in comparison to the real-valued coefficient since the
model order is halved for complex-coefficients. From all
these remarks about the pLSCF results, it can be seen that the
final estimates we obtained is highly dependent on the
parameter constraint and the type of coefficients used. This
makes the user to feel not confident about what he obtained
since there are several possible estimates for the same
problem.

One possible solution to get out from this problem when using
such type of estimators (i.e. linear least-squares estimator), is
to try different model orders and at each model order all the
possible parameter constraint will be tried. This means that at
each model order we start to constrain the lowest order
coefficients and consecutively the same is done for the next
order coefficients and so on till we reach the highest order
coefficients. Then, the obtained modal parameters estimates
are sent to the clustering algorithm to obtain the modal
parameters that correspond with the physical modes within the
frequency band of interest. A typical stabilization chart,
which is obtained from such approach, is shown in Figure 7.
In the y-axis of this chart, we have now index that indicates to
the model order/parameter constraint combination instead of
having only the model order like the one shown in Figure 4.
Indeed, this stabilization chart is obviously not clear compared
to the one in Figure 5 in particular around the lowest 2 modes.
But, this is not a big issue since our monitoring approach does
not use the stabilization chart to select the physical modes but
it uses a clustering algorithm to automatically select them.

Table 2: Results of the continuous monitoring using the
pLSCF (PolyMAX) estimator with real-valued coefficients
and different parameter constraint: Top: maximum order
coefficient, Middle: lowest order coefficient, Bottom: norm-
1 constraint

mode Median freq Hz Freq. std Median damp % Damp. std | Success rate (%)
1 0.3657 0.0044 1.3137 0.4593 53
2 0.3662 0.0061 1.4940 0.8937 62
3 1.2073 0.0057 0.6145 0.1834 100
4 1.4591 0.0152 1.0386 0.3096 99
5 1.5749 0.0165 1.0375 0.3518 100
mode Median freq Hz Freq. std Median damp % Damp. std Success rate (%)
1 0.3653 0.0041 1.6444 1.0224 59
2 0.3644 0.0057 24171 1.2613 52
3 1.2066 0.0059 0.6793 0.2319 100
4 1.4550 0.0168 1.0573 0.3840 99
5 1.5779 0.0162 1.0647 0.6071 98
mode | Median freq Hz Freq. std Median damp % Damp. std Success rate (%)
1 0.3651 0.0038 1.6761 0.8519 57
2 0.3652 0.0055 2.3370 1.0844 55
3 1.2069 0.0067 0.6371 0.2218 100
4 1.4542 0.0161 1.0615 0.3854 99
5 1.5745 0.0169 1.0006 0.4108 100

Table 3: Results of the continuous monitoring using the
pLSCF (PolyMAX) estimator with complex-valued
coefficients and different parameter constraint: Top:

maximum order coefficient, Middle: lowest order coefficient,
Bottom: norm-1 constraint

mode Median freq Hz Freq. std Median damp % | Damp. std | Success rate (%)
1 0.3654 0.0032 1.7947 0.6470 51
2 0.3634 0.0054 2.4671 0.8434 65
3 1.2064 0.0058 0.6746 0.2096 100
4 1.4583 0.0155 1.1090 0.2916 99
5 1.5743 0.0181 0.9675 0.3511 100
mode Median freq Hz Freq. std Median damp % Damp. std Success rate (%)
1 0.3654 0.0043 1.6419 0.7075 38
2 0.3639 0.0058 1.8137 0.9503 28
3 1.2060 0.0061 0.6818 0.2417 100
4 1.4531 0.0165 1.0439 0.4145 97
5 1.5757 0.0161 0.9629 0.4290 91
mode | Median freq Hz Freq. std Median damp % Damp. std Success rate (%)
1 0.3648 0.0031 1.4406 0.7071 32
2 0.3638 0.0054 2.5217 1.0281 41
3 1.2065 0.0062 0.6427 0.2208 100
4 1.4571 0.0153 1.0055 0.3134 94
5 1.5761 0.0164 0.9524 0.3907 95

All the modal parameters estimates obtained by the pLSCF
estimator with varying both the model orders and the
parameter constraint used are then processed by the
implemented clustering algorithm to obtain some clusters
which correspond to the physical modes. A typical clustering
result is shown in Figure 7. Indeed, as it is shown in Figure 7
the number of clusters we obtained have been increased.
Based on the statistical properties of each cluster and the
tracking options we defined (e.g. MAC, MPC, frequency
difference...), the clusters, which correspond to the physical
modes, will be automatically selected. In Table 4, the
continuous monitoring results, which are obtained by applying
the pLSCF estimator to the 100 datasets using the varying
model order and varying parameter constraint approach, are
shown. The results are shown for both the real-valued and
complex-valued coefficients cases. It can be seen from Table
4 that the consistency of the estimates, especially the damping
values, when we change the type of the coefficients is much
better than we used only one parameter constraint. Also, it can
be noted that the pLSCF estimates now are in a good
agreement with the ones obtained from the pMLE (see Table
1) whatever real or complex coefficients are used. Moreover,
one can see from the last column in Table 4 that the success
rate of the identified modes over the different datasets is
increased in particular for the 2 lowest modes, which is
something positive for the continuous tracking purpose. Since
the size of the data is increased, it can be noted from Table 4
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that the variability on the estimates has been also increased
and this in particular for the 2 lowest modes. The price has to
be paid when applying this approach is that the computational
time will be increased a bit compared with the classical
approach (i.e. applying the pLSCF with only varying order).
In the varying order/ varying parameter constraint approach,
the processing of one 10 minutes dataset with the pLSCF
estimator takes about 4 s, while with the classical approach
(i.e. applying the pLSCF with only varying order) it takes 1.8
s. It can be seen that it is still fast compared with the pMLE,
which takes about 5 minutes to process one 10 minutes
dataset.
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Figure 7: Left: A typical stabilization chart constructed
using all the possible parameter constraint at each model order
Right : The clustering results

Table 4: Results of the continuous monitoring using the
pLSCF (PolyMAX) estimator with real-valued coefficients
(Top) and complex-valued coefficients (bottom) when all the
possible parameter constraints are used at each model order

mode Median freq Hz Freq. std Median damp % | Damp. std | Success rate (%)
1 0.3642 0.0050 1.7135 1.1756 63
2 0.3659 0.0055 2.0737 1.4860 64
3 1.2068 0.0076 0.6696 0.3696 100
4 1.4567 0.0162 0.9957 0.4291 99
5 1.5768 0.0159 0.9266 0.4644 100
mode Median freq Hz Freq. std Median damp % Damp. std Success rate (%)
1 0.3656 0.0046 1.6630 1.0426 60
2 0.3632 0.0056 2.1433 1.2917 67
3 1.2066 0.0058 0.6627 0.2130 100
4 1.4551 0.0176 1.0298 0.7241 99
5 1.5743 0.0173 0.9384 0.3525 100

4.3 The FSSI results

In the frequency-domain subspace identification (FSSI)
technique [12], there are no many implementation variants the
user has to tweak. Therefore, we used the technique as it is
introduced by the authors in [12]. So, the FSSI technique has
been implemented in the framework of the presented fully
automated dynamic monitoring approach to process the
consecutive 100 data sets and to extract the modal parameters
of the 5 dominant modes within the frequency-band of
interest. We have set the number of modes to be identified to
32 the same as the one taken for the previous 2 estimators (i.e.
pMLE and pLSCF). The obtained results of the continuous
monitoring using the FSSI technique in terms of the median,
std, and the success rate are presented in Table 5. In general,
the computational time taken by the SSI techniques depends
on the number of outputs and the way by which the matrices
of the state space-mode are generated. Since the analyzed data
set has only 6 outputs and the FSSI technique that we are
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using is optimized with respect to the computational time, the
FSSI technique takes about less than 1 s to process one 10
minutes dataset.

Table 5: Results of the continuous monitoring using the
frequency-domain subspace identification (FSSI)

mode Median freq Hz Freq. std Median damp % Damp. std | Success rate (%
1 0.3654 0.0051 1.6324 1.1947 66
2 0.3641 0.0057 2.7955 1.3468 71
3 1.2073 0.0058 0.7290 0.2854 100
4 1.4589 0.0165 1.1941 0.4942 100
5 1.5749 0.0165 1.3431 0.6973 100

The results show a good agreement with the ones obtained
by the pMLE and the pLSCF that uses the varying model
order/varying parameter constraint. The FSSI technique
identifies slightly higher damping values than the pMLE and
the pLSCF estimators for all the modes except for the first
one. In [5], a time-domain subspace identification approach
called SSI-COV has been used and compared with the pLSCF
estimator in performing a continuous monitoring for the
OWT under test using two-weeks datasets. The results
presented in this reference showed also that the time-domain
SSI identifies slightly higher damping values. What can be
noticed also from the results presented in Table 4 that the
frequency-domain subspace identification (FSSI) technique
gives a bit higher success rate compared with the pLSCF and
PMLE estimators. This can be attributed to the fact that the
mode shapes in the FSSI technique have been estimated
directly from the state space model, while for the pMLE and
the pLSCF estimators the mode shapes are calculated in a
second step using the LSFD estimator.

5  CONCLUSIONS

In this paper, the applicability of three modal parameters
estimators namely the pMLE estimator, the pLSCF estimator
and frequency-domain subspace identification (FSSI)
technique to extract the modal parameters of the tower and the
supporting structure of an offshore wind turbine in a
continuous monitoring fashion has been investigated. There
were two main concerns that motivate the work and the
investigations done in this paper. The first concern was the
need to check the robustness of these estimators with respect
to a possible change in the implementation options (e.g. type
of coefficients, parameter constraint...) that could be defined
by the user. The second concern was to check if these
estimators would converge to the same results, although they
are different algorithms. The pMLE seems to be very robust
with respect to the implementations variants that can be used
where it always converge to the same results. This was
expected since the asymptotic properties of the pMLE say that
it is consistent estimator. On one hand, this puts more
confidence in the pMLE results we got. On the other hand, the
investigations done in this paper showed that the pMLE is the
slowest estimator compared with the other two estimators (i.e.
pLSCF and FSSI). The pLSCF is found to be very fast in
comparison with the pMLE, but it is found that it is
inconsistent with respect to any possible change in the
implementation options (e.g. type of coefficients, parameter
constraint...). To avoid or decrease the risk of this
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inconsistency problem of the linear least-squares estimators, e.
g. the pLSCF estimator, we proposed a global estimation
approach. In this global approach, we proposed to try the
different model orders and at each model order, we apply all
the possible parameter constraint that might be used. Then, all
the modal parameters estimated over all these modal orders
and all these parameter constraint are sent to a clustering
algorithm. The results showed that the proposed approach
helps to improve the consistency of the pLSCF estimator
when the implementation options changed and also the
success rate of the 5-dominant modes has been increased. The
investigation done for the FSSI technique using the analyzed
data sets showed that this technique is the fastest one
compared with the pMLE and the pLSCF estimators taking
into account that the computational time of the SSI techniques
is highly dependent on the number of output that is only 6 in
our case. The SSFI technique identifies slightly higher
damping values compared with the pMLE and the pLSCF
estimator. The reason behind that is still needed to be fully
understood. In addition, the FSSI technique showed a bit
higher success rate compared with the pMLE and the pLSCF
estimator. We can attribute that to the fact that the mode
shapes of the FSSI technique are estimated directly from the
state-space model while for the pMLE and the pLSCF the
mode shapes are estimated in a least-squares sense in a
second step using the LSFD estimator. Therefore, for the
pMLE and the pLSCF estimator we suggest to estimate
directly the mode shapes from the used model. It means that
the mode shapes will be estimated directly from the numerator
and the denominator coefficients of the right matrix fraction
description model that is being used to parameterize the
measured data. This direct estimation of the mode shapes
from the used model could help to improve the quality of the
estimated mode shapes and hence the tracking process. The
effects of the out-of-band model are better modeled in the
polynomial model than they are in the modal model, which
could help to improve the quality of the estimated mode
shapes. The modal model uses only two terms to model the
effects.
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