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 Copepod crustaceans are extremely abundant but, because of their small size and fragility, 

they fossilize poorly. Their fossil record consists of one Cretaceous (c. 115   Ma) parasite and 

a few Miocene (c. 14   Ma) fossils. In this paper, we describe abundant crustacean fragments, 

including copepods, from a single bitumen clast in a glacial diamictite of late Carboniferous 

age (c. 303   Ma) from eastern Oman. Geochemistry identifi es the source of the bitumen as 

an oilfi eld some 100 – 300   km to the southwest, which is consistent with an ice fl ow direction 

from glacial striae. The bitumen likely originated as an oil seep into a subglacial lake. This fi nd 

extends the fossil record of copepods by some 188   Ma, and of free-living forms by 289   Ma. The 

copepods include evidence of the extant family Canthocamptidae, believed to have colonized 

fresh water in Pangaea during Carboniferous times.         
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 N
o group of Metazoa exhibits the range of morphological 
diversity as observed among Crustacea 1 , and this structural 
disparity is best demonstrated by the ubiquitous Copepoda. 

Copepods outnumber every other group of multicellular animals on 
Earth, including the hyperabundant insects and nematode worms 2,3 . 
Th ese small crustaceans are found throughout the world ’ s natural 
and man-made aquatic environments, spanning the entire salin-
ity range from fresh water to hypersaline, and a vertical range that 
extends from the nutrient-rich black oozes of the oceanic abyss 4  
down to 10,000   m to the oligotrophic waters at 5,500   m altitude in 
the Himalayan mountains 5 . With more than 12,500 species, and 
outnumbering insects in abundance by up to three orders of mag-
nitude 6 , copepods carry a global biological importance. Current 
evidence suggests that copepods originated in the marine hyper-
benthic environment 3  and subsequently colonized the entire salinity 
spectrum, with major habitat shift s into the marine plankton and 
continental fresh waters. In terms of speciation and adaptive radia-
tion, one of the most extraordinary aspects of the Copepoda is their 
capacity to enter into associations with other organisms 7,8 . Cope-
pod symbionts display the highest taxonomic range of associates 
and hosts of any extant metazoan group; perhaps no other taxon 
has been so adaptable in host utilization. Nearly half of all known 
copepod species (approximately 4,300 species in 109 families) are 
symbionts, using hosts from almost every aquatic animal phylum, 
from sponges to mammals and reptiles. A crude estimate based on 
morphology suggests that there have been 11 or more independ-
ent origins for symbiosis across the various copepod orders, with a 
minimum of seven independent colonization events in fi sh. Among 
chordates, parasitic copepods are found across the entire vertebrate 
size spectrum, from the magnifi cent blue whale,  Balaenoptera 
musculus  9 , to the smallest extant fi sh species,  Paedocypris progenetica  10  
(see also R.H., unpublished data). 

 As a group, copepods exhibit an unusually diverse range of body 
forms, live in every conceivable environment (except aerial), and 
display a wide variety of life history modes, as predators, herbi-
vores and parasites. However, their global dominance and diversity 
is only part of their success story. Copepods underpin the world ’ s 
freshwater and marine ecosystems, having a major role in aquatic 
foodwebs 11 . Th ey are sensitive bioindicators of local and global 
climate change 12 , key ecosystem service providers 13,14  and parasites 
of economically important aquatic animals, being responsible for 
disease-related fi sh losses that exceed 430 million USD worldwide 
per annum 15 . Copepods sustain the majority of world fi sheries 11 , and 
through their roles as vectors of disease 16,17  also have a number of 
direct and indirect eff ects on human health and quality of life. 

 Despite their long evolutionary history, few fossil-based calibra-
tion points are available that could provide insights into the diver-
gence times of the various copepod lineages and the origin of their 
major radiation events. Copepods are typically minute and fragile; 
hence they have low fossilization potential and their body fossil 
record consists principally of one Cretaceous parasite 18,19  and some 
Miocene fossils 20 . Here, we report a unique occurrence of copepod 
and other crustacean fragments preserved in a single bitumen clast 
from a glacial diamictite of Carboniferous age from Oman, which 
extends the fossil record of copepods back by some 188   Ma, and of 
free-living forms by 289   Ma. Geochemical analyses indicate that the 
source was probably a bitumen seep some 100 – 300   km southwest of 
the present position of the diamictite, which concurs with geologi-
cal evidence of ice fl ow direction. Pollen in the diamictite indicates 
a late Carboniferous age, but the lack of palynomorphs in the clast 
suggests that the bitumen is the result of an oil seep into a subglacial 
lake with no open water. Some of the fragments seem to belong to 
the harpacticoid copepod family Canthocamptidae, the members of 
which typically inhabit fresh waters (including glacial lakes) today 21 . 
Th is record concurs with suggestions that harpacticoid copepods 
colonized fresh waters during the assembly of Pangaea 22 . However, 

the circumstances of the discovery mean that bitumen in diamictite 
is unlikely to be suffi  ciently common to be a productive source of 
fossil crustaceans in the future.  

 Results  
  Geology   .   Th e clast of solid bitumen (pitch;  Fig. 1a ) was discovered 
during a fi eld excursion to outcrops of the Permo-Carboniferous 
glacial Al Khlata Formation deposits in the Huqf Outcrop area of 
eastern interior Oman in January 2004. Th e solitary clast was located 
within a massive diamictite (Global Positioning System location: 
19  °  45 ′  59.2 ″  N, 57  °  26 ′  14.9 ″  E,  Fig. 1b ) of the Al Khlata Formation 
( Fig. 1d ), which exhibits vertically oriented clasts and clast clusters, 
and passes up without sedimentary break into a stratifi ed diamictite, 
thus showing the features of deposition from a subglacial rain-
out or melt-out 23 . Th e diamictite overlies a well-known Al Khlata 
Formation striated pavement located 260   m east – southeast of the 
bitumen-clast locality 24,25 . Palynological assemblages recovered 
from the diamictite contain no marine palynomorphs. Spores and 
pollen, including  Anapiculatisporites concinnus ,  Potonieisporites  spp. 
and  Punctatisporites  spp., indicate that it is late Carboniferous in age 
(Westphalian – Stephanian; early P5 or OSPZ1 26,27 ). Th e bitumen clast 
is of pebble size, angular to subrounded, with a slightly weathered, 
dull exterior and a microfractured shiny interior ( Fig. 1a ). Despite 
intensive searching, no further bitumen clasts have been found in 
this diamictite nor others in the Al Khlata outcrop area. 

 Organic geochemical analyses on the bulk bitumen indicate that 
it is homogeneous, with small microcracks and inclusions of min-
eral matter. Molecular and carbon isotope analyses were carried 
out on fl uid extracted from the sample by dichloromethane. Th e 
whole-extract gas chromatogram ( Fig. 1e ) is unusual in showing no 
evidence of the removal of n-alkanes in the range of nC7 to nC27. 
Biodegradation of surface oil seeps normally removes some or all 
of the n-alkanes present. Biomarker and carbon-isotope analyses 
indicate a mixed source for the bitumen from pre- and intra-salt 
Huqf source rocks of infra-Cambrian age, with no evidence of 
a contribution from Q oil sources 28 . Th e bitumen clast is thus similar 
to oils that occur today on the eastern fl ank of the South Oman Salt 
Basin 100 – 300   km to the southwest ( Fig. 1b ); therefore, it must have 
undergone transport, presumably by glacial processes, from the 
eastern fl ank area to the Huqf area during late Carboniferous times, 
which is supported by the ice fl ow direction preserved on Oman 
glaciated pavements. As the bitumen clast occurred within an upper 
Carboniferous diamictite, the clast and the organic material it con-
tains must be at least late Carboniferous in age. Th e possibility that 
the clast is older and was reworked into upper Carboniferous glacial 
deposits cannot be ruled out; however, this seems unlikely given the 
relatively low mechanical strength of solid bitumen and the rela-
tively large size of the Al Khlata clast. 

 Because the bitumen is from a Huqf source that was already 
mature at this time 28,29 , and because it occurs within a rain-out 
diamictite with no evidence of marine infl uence, it seems likely that 
it reached the surface subaqueously in a subglacial lake. In the area 
of the likely oil seepage, glacial lake sediments of the same P5 age 
as that which contains the bitumen clast directly overlie Devonian 
sands and shales. Because of the low density of the warm oil, it rose 
through the cool water column as a globule, presumably engulfi ng 
and entombing the crustaceans as it ascended ( Fig. 1c ). Th is sequence 
of events would explain the lack of pollen and spores in the bitumen 
as these would be rare in a subglacial lake in which ice cover would 
have prevented spores and pollen from reaching the lake waters. Th e 
fragmented nature of the fossils may relate to their inclusion in the 
warm oil globule that broke them up as it ascended and solidifi ed 
into pitch.   

  Palaeontology   .   Th e organic residue aft er maceration of the bitumen 
consists of dark brown, resinous material immediately recognizable 
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as crustacean remains, no palynomorphs and little other organic 
material, apart from amorphous organic fragments. Th e arthro-
pod remains consist of thousands of fragments ranging from 50 to 
250    μ m in size ( Figs 2a – i and 3a – g ). Th e fragments are referred to 
as Crustacea on account of their biramous appendages, setae with 
setules and freshwater origin. Th ere are no whole specimens, no 
body parts and very few trunk appendages; nearly all are cephalic 
appendage fragments, including antennulary and antennary seg-
ments, mandibular gnathobases and maxillary endites. Preserva-
tion is exceptional in that some fragments show muscles ( Fig. 2e ), 
jointed setae ( Figs 2h,i ), geniculate setae ( Figs 2h,i ) and spinular 
ornamentation ( Fig. 3b ). Th e possibility of contamination with 
recent crustaceans can be ruled out because the preparation 
included repeated washing of the unprocessed clast so that nothing 
is adhered to the surface, and bitumen pieces from the centre of 
the clast were processed, which would not have been exposed since 
Carboniferous times. 

 Although many of the fragments that we refer to as indetermi-
nate Crustacea ( Figs 2b – f and 3a,c,d ) can be excluded from the 

Copepoda, a few of the crustacean remains can be assigned with 
confi dence to that group. Although unique autapomorphies (for 
example, intercoxal sclerite, presence of a fi rst copepodid stage 
in the life cycle) of the subclass Copepoda are few 3  and not seen 
in our fragmentary material, various lines of evidence point not 
only to Copepoda but also to ordinal and familial ranks within the 
subclass. Evidence for copepods comes from the size of the frag-
ments, geniculate setae (displaying a well-defi ned fl exure zone) 
on the antennary endopod ( Figs 2h,i , cf. 3h) and the characteristic 
condyle between the allobasis and the endopod of the antenna 
( Fig. 3e ). Th e size and structure of the mandibular gnathobase 
( Fig. 3g ) also indicate a copepod origin. Th e combination of 
geniculate setae on the antennary endopod and the presence of an 
exopod on the allobasis place some of the copepod remains in the 
order Harpacticoida, and specifi cally the family Canthocamptidae. 
Geniculate setae have been observed on the branchiostegites of 
some decapod crustaceans 30  and on the prodorsum and hypostome 
of certain acarid mites 31,32  but their location and morphology are 
clearly diff erent.    

        Figure 1    |         Geological setting of the bitumen clast in the Al Khlata Formation, upper Carboniferous, Oman. ( a ) The bitumen clast  in situ  in Al Khlata 

Formation diamictite. ( b ) Location map of the Sultanate of Oman showing the bitumen clast locality (Wadi Al Khlata) in relation to the outcrop and 

subsurface extent of the Al Khlata, the likely source of the bitumen in the Thuraya area, and the ice fl ow direction as evidenced by glacially striated 

pavements. ( c ) Diagram showing our interpretation of the origin of the bitumen clast and its crustacean fragments. ( d ) Stratigraphy of the Al Khlata 

Formation showing the relative age of the deposits containing the bitumen clast. ( e ) Gas chromatogram of the solvent-soluble fraction of the bitumen 

clast. The chromatogram is unusual for a surface petroleum sample, as it contains a series of apparently unaltered  n -alkanes in the range of nC7 to nC27. 

Biodegradation of surface oil seeps normally removes some or all of the  n -alkanes present 60 . The relatively high abundance of biomarker compounds 

eluting between 4,000 and 5,000   s is indicative of mixing of at least two oil charges from Huqf source rocks. Thermal maturity of the bitumen, 

estimated from molecular distributions of biomarker compounds and from bitumen refl ectance analysis, suggests relatively low thermal maturity of the 

high-molecular-weight fraction (equivalent approximately 0.6 %  vitrinite refl ectance).  
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 Discussion 
 Copepods dominate the holozooplankton community in the largest 
biome on Earth — the 1,347,000,000   km 3  of the open pelagic water 
column — and also live in virtually all freshwater habitats 33  and as 
symbionts of invertebrate and vertebrate hosts 7,8 . Approximately 
2,814 species live in continental habitats, from the largest ancient 
lakes to subterranean waters, from glacial pools 34  to hot springs, and 
from hypersaline lakes to phytotelmata 35 . Th ere is overwhelming 
evidence that the ancestors of modern freshwater copepods evolved 
in marine environments, where they existed and diversifi ed over 
millions of years 3 . At least 22 independent colonizations of fresh and 
inland continental waters have been identifi ed 22 , 10 of which 
represent harpacticoid lineages. Th e timing of colonization events has 
been estimated by inference from biogeographical data, and it was sug-
gested that there was a succession of at least four major waves of colo-
nization of inland continental waters by harpacticoids. On the basis 
of its modern cosmopolitan distribution, the Canthocamptidae (600    +     
spp.) has been claimed to be in the fi rst wave of copepod colonization 
of the whole of Pangaea around 250   Ma 22 . Th is suggestion is in accord-
ance with the present fi nding of freshwater copepod remains. 

 Th e fossil record of copepods is meagre, consisting of a subfossil 
harpacticoid from a Neolithic cave fl oor in Kent, United Kingdom 36 , 
a Pleistocene harpacticoid from a lake deposit in Argentina 37 , 

a cyclopoid and the harpacticoid  Cletocamptus  sp. from a Miocene 
lake deposit in California 20  and a fi sh parasite from the Cretaceous 
Santana Formation of Brazil, currently referred to the extant 
siphonostomatoid family Dichelesthiidae 19 . Possible Cretaceous 
amber copepods were reported from Canada 38  and Spain 39 , but 
both specimens are mere ghostly shapes, and the former could 
not be traced in the collections. A possible copepod or remipedian 
affi  nity was put forward for a fossil from the lowermost Ordovi-
cian of  Ö land, Sweden, although without much evidence or con-
fi dence 40 . Until now there have been no records of copepods from 
ancient bitumen, although other crustaceans are well known to 
have come from bitumen, particularly from Tertiary and younger 
deposits 41 . Subfossil copepod eggs have been reported from Qua-
ternary sites 42,43 , and it is thought that some Phanerozoic acritarchs 
may be copepod eggs 44 – 46 . Fossil galls resulting from the activi-
ties of parasitic copepods were reported from Middle and Late 
Jurassic echinoderms 47 . Th us, body-fossil and trace-fossil evidence 
places the previously oldest known Copepoda to early Cretaceous 
or early Jurassic, respectively, but the fossil fragments reported 

     Figure 3    |         Crustacean fragments from upper Carboniferous bitumen 
clast. ( a ) Unknown crustacean: pair of biramous trunk limbs showing 

two-segmented rami; endopod on left side missing; exopod incomplete on 

right side; note incomplete annulations. ( b ) Maxilla of possible copepod. 

( c ) Large appendage fragment, possibly an endite, of unknown crustacean. 

( d ) Large appendage fragment of uniramous trunk limb with curved 

claw. ( e ) Allobasis of antenna (insert showing exopod) of canthocamptid 

copepod; asterisk indicates condyle. ( f ) Antennulary segment of copepod; 

asterisks indicate insertion scars of missing armature elements. ( g ) Mandibular 

gnathobase of copepod. ( h ) Modern canthocamptid antenna: explanatory key 

for  Figures 2h, i and 3e ; asterisk indicates condyle, geniculations arrowed. 

Scale bars, 100    μ m ( c ,  d ), 50    μ m ( a ,  b ,  e ,  f ,  h ), 25    μ m ( g ).  

       Figure 2    |         Crustacean fragments from upper Carboniferous bitumen 
clast. ( a ) Endopod of a maxilla, possibly of copepod. ( b ) Endites of 

crustacean maxilla. ( c ) Distal segment of exopod of biramous trunk 

limb (see  Figure 3a ). ( d ) Fragment of crustacean maxilla or maxilliped. 

( e ) Maxillary endite with jointed elements (arrowed). ( f ) Pair of maxillary 

endites, joint arrowed, of possible copepod. ( g ) A part of maxilla; arrow 

points to intrinsic muscle showing strands. ( h ) Distal part of antennary 

endopod of canthocamptid copepod. ( i ) Detail of geniculate setae of  h . 

Scale bars, 50    μ m.  
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here indicate that modern copepods have existed since at least late 
Carboniferous times. 

 Th e phylogenetic consensus tree ( Fig. 4 ) is based on morphol-
ogy 1  and recently obtained results derived from small subunit ribo-
somal DNA (18S) sequence data 48  and show the eff ect of the new 
fi nd on the geological history of copepods. Th e new evidence not 
only takes the fossil record of Harpacticoida back to Carboniferous 
times but also that of the primarily planktonic but more primitive 
orders Platycopioida, Calanoida and Mormonilloida. Th e mono-
phyly of Copepoda is generally accepted 3,49,50 , but their relation-
ship with other groups within the Crustacea has been contentious. 
Copepods have traditionally been placed in the heterogeneous class 
Maxillopoda, which seems to be an assemblage of short-bodied taxa 
with morphological characteristics, such as gonopore location or 
nauplius eye structure, which link together diff erent combinations 
of subgroups 1 . Some morphological studies 51,52  have recognized two 
lineages within the Maxillopoda and placed the Copepoda, Mysta-
cocarida and the extinct Skaracarida in the copepodan lineage as 
sister to the thecostracan lineage; however, there is now a general 
consensus that there is neither robust morphological 1,53  nor mole-
cular 54 – 57  support for maxillopodan monophyly. A recent phylog-
enomic analysis 58  of 62 nuclear protein-coding sequences revealed 
an unanticipated group (Multicrustacea or  ‘ numerous crustaceans ’ ) 
embracing the Copepoda as sister to a thecostracan-malacostracan 

clade. Bayesian statistical (non-clock) estimates of divergence 
times 54  suggest that thecostracans (barnacles and relatives) and 
malacostracans (crabs and relatives) separated no later than 459   Ma 
(Middle Ordovician). Th e basal divergence of the Copepoda within 
the Multicrustacea must therefore have occurred much earlier but 
conceivably not before the emergence of the Branchiopoda (the 
sistergroup of the Multicrustacea 58 ) at 521   Ma 54 . Our new material 
conclusively extends the copepod fossil record back to the late Car-
boniferous period, but extrapolation of available divergence dates 
suggests that the most abundant pancrustacean clade had already 
originated in the Cambrian. 

 Bitumen is a rare but eff ective hosting medium for Fossil-
Lagerst ä tten, best known in oil sands and tar pits such as La Brea, 
California 59 ; however, the discovery reported here is the fi rst record 
of preservation of fossil soft  parts in an isolated bitumen clast. Th e 
preservation of crustacean fragments is exceptional, including muscle 
fi bres ( Fig. 2g ), which, together with the lack of degradation shown 
by the bitumen in this study, is remarkable. Th is suggests the need 
for further study of the taphonomy of crustacean cuticles, using 
pyrolysis gas chromatography, for example, should more such clasts 
come to light.   

 Methods  
  Palynology   .   In an attempt to understand more about its age and origin, and with 
the possibility that it might contain trapped biota, parts of the clast were prepared 
for palynology and organic geochemistry. Th e material was broken up to approxi-
mately pea-sized pieces, and each piece subjected to a diff erent process, including 
dissolution, using very strong solvents, assisted by heat. Solvents and methods 
attempted on separate samples of bitumen included 100 %  dichloromethane and 
ultrasonication (for 30   min); 50:50 of dichloromethane / methanol and ultrasonica-
tion (for 30   min); 100 %  dimethylsulphoxide (for 2 weeks); 30 %  hydrogen peroxide 
(for 4 days); and 50:50 of 30 %  hydrogen peroxide / concentrated nitric acid (for 
4 days). Such attempts at liberation by simple dissolution were unsuccessful, the 
bitumen being almost completely insoluble to most solvents. Th e most successful 
method of liberation was long periods (12 – 24   h) of oxidation by Schultze ’ s Solution 
and / or fuming nitric acid, and then treatment with a 5 %  potassium hydroxide 
solution. With both acids, the solid bitumen was reduced to a solution, which 
could be poured off , leaving a residue of solid, fi ne organic residue. Enough organic 
residue from a small piece of solid bitumen was released to allow several micro-
scope slide preparations to be made.   

  Geochemistry   .   Molecular and carbon isotope analyses were carried out on bitu-
men extracted from the solid sample by dichloromethane. Th e solvent extractable 
organic matter from the sample was fractionated into saturated and aromatic 
hydrocarbon fractions by MPLC. Th e hydrocarbon fractions were analysed by 
gas chromatography – mass spectrometry to determine their biomarker composi-
tions. Bulk hydrocarbon isotope values were measured on saturated and aromatic 
hydrocarbon fractions. Compound-specifi c carbon isotope analyses were carried 
out on the alkane fraction that was separated from the saturated hydrocarbons of 
the bitumen extract using a molecular sieve technique.   

  Palaeontology   .   Arthropod fragments were cleared in 90 %  lactic acid for 2 weeks 
and subsequently mounted on slides in lactophenol mounting medium. Some 
fragments (for example,  Fig. 2h,i ) were carefully warmed in 10 %  KOH by weight in 
distilled water at about 90    ° C for 12   h and this procedure was repeated in 90 %  lactic 
acid to reveal additional detail. Glass fi bres were added to prevent distortion of 
the length / width ratios and of the three-dimensional structure of the appendages 
and to facilitate rotation and manipulation, allowing observation from all angles. 
Preparations were sealed with transparent nail varnish. All drawings have been 
prepared using a  camera lucida  on a  Leica  DMR diff erential interference contrast 
microscope. Measurements were taken with an ocular micrometre. Th e material 
is deposited in the collections of the Department of Zoology, Natural History 
Museum, London.               
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